公共測量作業規程

広島県水道広域連合企業団 令和6年5月

広島県水道広域連合企業団公共測量作業規程目次

- 第1編 総則 (第1条-第17条)
- 第2編 基準点測量
 - 第1章 通則
 - 第1節 要 旨(第18条・第19条)
 - 第2節 製品仕様書の記載事項 (第20条)
 - 第2章 基準点測量
 - 第1節 要旨(第21条—第24条)
 - 第2節 作業計画 (第25条)
 - 第3節 選点(第26条-第30条)
 - 第4節 測量標の設置 (第31条-第33条)
 - 第5節 観測 (第34条—第39条)
 - 第6節 計算(第40条—第43条)
 - 第7節 品質評価(第44条)
 - 第8節 成果等の整理(第45条・第46条)
 - 第3章 水準測量
 - 第1節 要旨(第47条—第51条)
 - 第2節 作業計画(第52条)
 - 第3節 選点(第53条-第57条)
 - 第4節 測量標の設置 (第58条―第60条)
 - 第5節 観測 (第61条—第66条)
 - 第6節 計算(第67条—第70条)
 - 第7節 品質評価(第71条)
 - 第8節 成果等の整理(第72条・第73条)
 - 第4章 復旧準測量(第74条—第77条)
- 第3編 地形測量及び写真測量
 - 第1章 通則
 - 第1節 要旨(第78条)
 - 第2節 製品仕様書の記載事項(第79条・第80条)
 - 第3節 測量方法(第81条)
 - 第4節 図式(第82条)
 - 第2章 現地測量
 - 第1節 要旨(第83条—第87条)
 - 第2節 作業計画(第88条)
 - 第3節 基準点の設置 (第89条)

第4節 細部測量

- 第1款 TS等による細部測量(第90条-第92条)
- 第2款 RTK-GPS法を用いる細部測量(第93条・第94条)
- 第3款 ネットワーク型RTK-GPS法を用いる細部測量

(第95条・第96条)

- 第4款 TS等とRTK-GPS法又はTS等とネットワーク型RTK-GPS法を併用する細部測量(第97条-第99条)
- 第5節 数値編集 (第100条・第101条)
- 第6節 数値地形図データファイルの作成(第102条)
- 第7節 品質評価(第103条)
- 第8節 成果等の整理(第104条・第105条)

第3章 空中写真測量

- 第1節 要旨(第106条—第108条)
- 第2節 作業計画(第109条)
- 第3節 標定点の設置 (第110条-第113条)
- 第4節 対空標識の設置 (第114条―第119条)
- 第5節 撮影
 - 第1款 要旨(第120条)
 - 第2款 機材(第121条—第123条)
 - 第3款 撮影(第124条—第142条)
 - 第4款 空中写真の数値化(第143条-第149条)
 - 第5款 同時調整 (第150条・第151条)
 - 第6款 品質評価 (第152条)
 - 第7款 成果等(第153条)
- 第6節 刺針(第154条—第158条)
- 第7節 現地調査(第159条—第164条)
- 第8節 空中三角測量 (第165条—第174条)
- 第9節 数值図化(第175条—第187条)
- 第10節 数值編集 (第188条—第193条)
- 第11節 補測編集(第194条—第198条)
- 第12節 数値地形図データファイルの作成 (第199条)
- 第13節 品質評価(第200条)
- 第14節 成果等の整理 (第201条・第202条)

第4章 既成図数値化

- 第1節 要旨(第203条-第206条)
- 第2節 作業計画 (第207条)

- 第3節 計測用基図作成(第208条・209条)
- 第4節 計測(第210条—第213条)
- 第5節 数値編集 (第214条—第216条)
- 第6節 数値地形図データファイルの作成(第217条)
- 第7節 品質評価(第218条)
- 第8節 成果等の整理 (第219条・第220条)

第5章 修正測量

- 第1節 要旨(第221条—第224条)
- 第2節 作業計画(第225条)
- 第3節 予察(第226条)
- 第4節 修正数值図化
 - 第1款 空中写真測量による修正数値図化 (第227条・第228条)
 - 第2款 TS等による修正数値図化(第229条・第230条)
 - 第3款 RTK-GPS法を用いる修正数値図化

(第231条・第232条)

第4款 ネットワーク型RTK-GPS法を用いる修正数値図化

(第233条・第234条)

- 第5款 TS等とRTK-GPS法又はTS等とネットワーク型RTK-GPS 法を併用する修正数値図化(第235条・第236条)
- 第6款 既成図を用いる方法による修正数値図化

(第237条—第239条)

第7款 他の既成データを用いる方法による修正数値図化

(第240条—第242条)

- 第5節 現地調査(第243条)
- 第6節 修正数値編集 (第244条—第246条)
- 第7節 数値地形図データファイルの更新(第247条)
- 第8節 品質評価(第248条)
- 第9節 成果等の整理 (第249条・第250条)

第6章 写真地図作成

- 第1節 要旨(第251条—第255条)
- 第2節 作業計画(第256条・第257条)
- 第3節 数値地形モデルの作成 (第258条-第263条)
- 第4節 正射変換(第264条・第265条)
- 第5節 モザイク (第266条-第268条)
- 第6節 写真地図データファイルの作成 (第269条・第270条)
- 第7節 品質評価(第271条)

第8節 成果等の整理 (第272条・第273条)

第7章 航空レーザ測量

- 第1節 要旨(第274条—第276条)
- 第2節 作業計画(第277条)
- 第3節 GPS基準局の設置 (第278条・第279条)
- 第4節 航空レーザ計測(第280条―第284条)
- 第5節 調整用基準点の設置 (第285条・第286条)
- 第6節 三次元計測データ作成(第287条―第294条)
- 第7節 オリジナルデータ作成(第295条・第296条)
- 第8節 グラウンドデータ作成(第297条―第300条)
- 第9節 グリッドデータ作成(第301条―第303条)
- 第10節 等高線データ作成(第304条・第305条)
- 第11節 数値地形図データファイル作成(第306条)
- 第12節 品質評価(第307条)
- 第13節 成果等の整理(第308条―第309条)

第8章 地図編集

- 第1節 要旨(第310条—第314条)
- 第2節 作業計画 (第315条)
- 第3節 資料収集及び整理(第316条)
- 第4節 編集原稿データの作成(第317条・第318条)
- 第5節 編集 (第319条—第321条)
- 第6節 品質評価(第322条)
- 第7節 成果等の整理 (第323条・第324条)

第9章 基盤地図情報の作成

- 第1節 要旨(第325条)
- 第2節 基盤地図情報の作成方法(第326条)
- 第3節 既存の測量成果等の編集による基盤地図情報の作成

(第327条・第328条)

- 第4節 作業計画(第329条)
- 第5節 既存の測量成果等の収集及び整理(第330条)
- 第6節 基盤地図情報を含む既存の測量成果の調整

(第331条-第334条)

- 第7節 基盤地図情報項目の抽出(第335条)
- 第8節 品質評価(第336条)
- 第9節 成果等の整理(第337条・第338条)

第4編 応用測量

第1章 通則

- 第1節 要旨(第339条—第345条)
- 第2節 製品仕様書の記載事項 (第346条)

第2章 路線測量

- 第1節 要旨(第347条・第348条)
- 第2節 作業計画 (第349条)
- 第3節 線形決定 (第350条-第352条)
- 第4節 中心線測量(第353条-第355条)
- 第5節 仮BM設置測量(第356条—第358条)
- 第6節 縦断測量(第359条・第360条)
- 第7節 横断測量(第361条・第362条)
- 第8節 詳細測量(第363条・第364条)
- 第9節 用地幅杭設置測量(第365条—第367条)
- 第10節 品質評価(第368条)
- 第11節 成果等の整理(第369条・第370条)

第3章 河川測量

- 第1節 要旨(第371条・第372条)
- 第2節 作業計画 (第373条)
- 第3節 距離標設置測量(第374条・第375条)
- 第4節 水準基標測量(第376条・第377条)
- 第5節 定期縦断測量(第378条・第379条)
- 第6節 定期横断測量(第380条・第381条)
- 第7節 深浅測量 (第382条・第383条)
- 第8節 法線測量(第384条・第385条)
- 第9節 海浜測量及び汀線測量(第386条・第387条)
- 第10節 品質評価(第388条)
- 第11節 成果等の整理 (第389条・第390条)

第4章 用地測量

- 第1節 要旨(第391条・第392条)
- 第2節 作業計画(第393条)
- 第3節 資料調査(第394条—第399条)
- 第4節 復元測量(第400条・第401条)
- 第5節 境界確認 (第402条・第403条)
- 第6節 境界測量 (第404条—第408条)
- 第7節 境界点間測量(第409条・第410条)
- 第8節 面積計算(第411条・第412条)

- 第9節 用地実測図データファイルの作成(第413条・第414条)
- 第10節 用地平面図データファイルの作成(第415条・第416条)
- 第11節 品質評価(第417条)
- 第12節 成果等の整理 (第418条・第419条)
- 第5章 その他の応用測量
 - 第1節 要旨(第420条)
 - 第2節 作業計画(第421条)
 - 第3節 作業方法(第422条)
 - 第4節 作業内容(第423条)
 - 第5節 品質評価 (第424条)
 - 第6節 成果等の整理 (第425条・第426条)

附則

- 付録1 測量機器検定基準
- 付録2 公共測量における測量機器の現場試験の基準
- 付録3 測量成果検定基準
- 付録4 標準様式
- 付録5 永久標識の規格及び埋設方法
- 付録 6 計算式集
- 付録7 公共測量標準図式
- 別表 1 測量機器級別性能分類表

第1編 総則

(目的及び適用範囲)

- 第1条 この規程は、測量法(昭和24年法律第188号。以下「法」という。)第33条第1項の規定に基づき、公共測量における標準的な作業方法等を定め、その規格を統一するとともに、必要な精度を確保すること等を目的とする。
- 2 この規程は、広島県水道広域連合企業団が行う公共測量に適用する。 (測量の基準)
- 第2条 この規程を適用して行う測量において、位置は、特別の事情がある場合を除き、平面直角座標系(平成 14年国土交通省告示第9号)に規定する世界測地系に従う直角座標及び測量法施行令(昭和24年政令第32 2号)第2条第2項に規定する日本水準原点を基準とする高さ(以下「標高」という。)により表示する。 (測量法の遵守等)
- 第3条 測量計画機関(以下「計画機関」という。)及び測量作業機関(以下「作業機関」という。)並びに作業 に従事する者(以下「作業者」という。)は、作業の実施に当たり、法を遵守しなければならない。
- 2 この規程において、使用する用語は、法において使用する用語の例によるものとする。 (関係法令等の遵守等)
- 第4条 計画機関及び作業機関並びに作業者は、作業の実施に当たり、財産権、労働、安全、交通、土地利用規制、環境保全、個人情報の保護等に関する法令を遵守し、かつ、これらに関する社会的慣行を尊重しなければならない。

(測量の計画)

- 第5条 計画機関は、公共測量を実施しようとするときは、目的、地域、作業量、期間、精度、方法等について適切な計画を策定しなければならない。
- 2 計画機関は、前項の計画の立案に当たり、当該作業地域における基本測量及び公共測量の実施状況について調査し、利用できる測量成果、測量記録及びその他必要な資料(以下「測量成果等」という。)の活用を図ることにより、測量の重複を避けるよう努めなければならない。
- 3 計画機関は、得ようとする測量成果の種類、内容、構造、品質等を示す仕様書(以下「製品仕様書」という。) を定めなければならない。
 - 製品仕様書は、「地理情報標準プロファイル Japan Profile for Geographic Information Standards (JPGIS)」(以下「JPGIS」という。) に準拠するものとする。
 - 二 製品仕様書による品質評価の位置正確度等については、この規程の各作業工程を適用するものとする。ただし、この規程における各作業工程を適用しない場合は、JPGISによる品質評価を標準とするものとする。 (測量法に基づく手続)
- 第6条 計画機関は、法第39条において読み替えて準用する法第14条第1項、同条第2項(実施の公示)、法第21条(永久標識及び一時標識に関する通知)及び法第26条(測量標の使用)並びに法第30条第1項(測量成果の使用)、法第36条(計画書についての助言)、法第37条(公共測量の表示)及び法第40条第1項(測量成果の提出)等の規定による手続を適切に行わなければならない。

(測量業者以外の者への発注の禁止)

第7条 計画機関は、法第10条の3に規定する測量業者以外の者に、この規程を適用して行う測量を請け負わせてはならない。

(基盤地図情報)

- 第8条 この規程において「基盤地図情報」とは、地理空間情報活用推進基本法(平成19年法律第63号。以下「基本法」という。)第2条第3項に基づく地理空間情報活用推進基本法第2条第3項の基盤地図情報に係る項目及び基盤地図情報が満たすべき基準に関する省令(平成19年国土交通省令第78号。以下「項目及び基準に関する省令」という。)の規定を満たす位置情報をいう。
- 2 計画機関は、測量成果である基盤地図情報の整備及び活用に努めるものとする。 (実施体制)
- 第9条 作業機関は、測量作業を円滑かつ確実に実行するため、適切な実施体制を整えなければならない。
- 2 作業機関は、作業計画の立案、工程管理及び精度管理を総括する者として、主任技術者を選任しなければならない。
- 3 前項の主任技術者は、法第49条の規定に従い登録された測量士であり、かつ、高度な技術と十分な実務経験を有する者でなければならない。
- 4 作業機関において、技術者として公共測量に従事する者は、法第49条の規定に従い登録された測量士又は測量士補でなければならない。

(安全の確保)

第10条 作業機関は、特に現地での測量作業において、作業者の安全の確保について適切な措置を講じなければならない。

(作業計画)

第11条 作業機関は、測量作業着手前に、測量作業の方法、使用する主要な機器、要員、日程等について適切な作業計画を立案し、これを計画機関に提出して、その承認を得なければならない。作業計画を変更しようとするときも同様とするものとする。

(工程管理)

- 第12条 作業機関は、前条の作業計画に基づき、適切な工程管理を行わなければならない。
- 2 作業機関は、測量作業の進捗状況を適宜計画機関に報告しなければならない。 (精度管理)
- 第13条 作業機関は、測量の正確さを確保するため、適切な精度管理を行い、この結果に基づいて品質評価表及 び精度管理表を作成し、これを計画機関に提出しなければならない。
- 2 作業機関は、各工程別作業の終了時その他適宜この規定に定める点検を行わなければならない。
- 3 作業機関は、作業の終了後速やかに点検測量を行わなければならない。
 - 二 点検測量率は、次表を標準とする。

測	量	種別	[1]	率
1 • 2	級基	準点測	則量	10 %
3 · 4	級基	準点測	則量	5 %
1~4	4 級 水	、準 測] 量	5 %
簡易	易水	準 測	量	5 %
地形	測量及で	バ写真液	則量	2 %
線	形	決	定	5 %
中	心 線	測	量	5 %
縦	断	測	量	5 %
横	断	測	量	5 %

(機器の検定等)

- 第14条 作業機関は、計画機関が指定する機器については、付録1に基づく測定値の正当性を保証する検定を行った機器を使用しなければならない。ただし、1年以内に検定を行った機器(標尺については3年以内)を使用する場合は、この限りでない。
- 2 前項の検定は、測量機器の検定に関する技術及び機器等を有する第三者機関によるものとする。ただし、計画機関が作業機関の機器の検査体制を確認し、妥当と認められた場合には、作業機関は、付録2による国内規格の方式等に基づき自ら検査を実施し、その結果を第三者機関による検定に代えることができる。
- 3 作業者は、観測に使用する主要な機器について、作業前及び作業中に適宜点検を行い、必要な調整をしなければならない。

(測量成果の検定)

第15条 作業機関は、基盤地図情報に該当する測量成果等の高精度を要する測量成果又は利用度の高い測量成果 で計画機関が指定するものについては、付録3に基づく検定に関する技術を有する第三者機関による検定を受け なければならない。

(測量成果等の提出)

- 第16条 作業機関は、作業が終了したときは、遅滞なく、測量成果等を付録4の様式に基づき整理し、これらを 計画機関に提出しなければならない。
- 2 第2編を適用して行う基準点測量(第4編において第2編を適用して行うこととしているものを含む。)において得られる測量成果は、すべて基盤地図情報に該当するものとする。
- 3 第3編及び第4編を適用して行う地形測量及び写真測量及び応用測量において得られる測量成果であって、基盤地図情報に該当するものは、第3編第9章の規定を適用するものとする。
- 4 測量成果等は、原則としてあらかじめ計画機関が定める様式に従って電磁的記録媒体で提出するものとする。
- 5 計画機関は、第1項の規定により測量成果等の提出を受けたときは、速やかに当該測量成果等の精度、内容等を検査しなければならない。
- 6 測量成果等において位置を表示するときは、世界測地系によることを表示するものとする。 (機器等及び作業方法に関する特例)
- 第17条 計画機関は、必要な精度の確保及び作業能率の維持に支障がないと認められる場合には、この規程に定めのない機器及び作業方法を用いることができる。ただし、第5条第3項に基づき、各編にその詳細を定める製品仕様書に係る事項については、この限りでない。
- 2 計画機関は、この規程に定めのない新しい測量技術を使用する場合には、使用する資料、機器、測量方法等により精度が確保できることを作業機関等からの検証結果等に基づき確認するとともに、確認に当たっては、あらかじめ国土地理院の長の意見を求めるものとする。
- 3 国土地理院が新しい測量技術による測量方法に関するマニュアルを定めた場合は、当該マニュアルを前項の確認のための資料として使用することができる。

第2編 基準点測量

第1章 通則

第1節 要旨

(要旨)

- 第18条 本編は基準点測量の作業方法等を定めるものとする。
- 2 「基準点測量」とは、既知点に基づき、基準点の位置又は標高を定める作業をいう。
- 3 「基準点」とは、測量の基準とするために設置された測量標であって、位置に関する数値的な成果を有するも のをいう。
- 4 「既知点」とは、既設の基準点(以下「既設点」という。)であって、基準点測量の実施に際してその成果が 与件として用いられるものをいう。
- 5 「改測点」とは、基準点測量により改測される既設点であって、既知点以外のものをいう。
- 6 「新点」とは、基準点測量により新設される基準点(以下「新設点」という。)及び改測点をいう。 (基準点測量の区分)
- 第19条 基準点測量は、水準測量を除く狭義の基準点測量(以下「基準点測量」という。)と水準測量とに区分するものとする。
- 2 基準点は、水準測量を除く狭義の基準点測量によって設置される狭義の基準点(以下「基準点」という。)と 水準測量によって設置される水準点とに区分するものとする。

第2節 製品仕様書の記載事項

(製品仕様書)

第20条 製品仕様書は当該基準点測量の概覧、適用範囲、データ製品識別、データ内容及び構造、参照系、データ品質、データ品質評価手順、データ製品配布、メタデータ等について体系的に記載するものとする。

第2章 基準点測量

第1節 要旨

(要旨)

- 第21条 「基準点測量」とは、既知点に基づき、新点である基準点の位置を定める作業をいう。
- 2 基準点測量は、既知点の種類、既知点間の距離及び新点間の距離に応じて、1級基準点測量、2級基準点測量、3級基準点測量及び4級基準点測量に区分するものとする。
- 3 1級基準点測量により設置される基準点を1級基準点、2級基準点測量により設置される基準点を2級基準点、3級基準点測量により設置される基準点を3級基準点及び4級基準点測量により設置される基準点を4級基準点という。

(既知点の種類等)

第22条 前条第2項に規定する基準点測量の各区分における既知点の種類、既知点間の距離及び新点間の距離 は、次表を標準とする。

項目区分	1級基準点測量	2級基準点測量	3級基準点測量	4級基準点測量
既知点の種類	一~四等三角点	一~四等三角点	電 子 基 準 点 一~四等三角点 1~2級基準点	一~四等三角点
既知点間距離 (m)	4, 000	2,000	1,500	500
新点間距離(m)	1,000	500	200	50

- 2 前項の区分によらず、公共測量により設置した既知点を用いる場合は、当該既知点がどの区分に該当するかを特定の上、前項の基準に従い既知点として使用することができる。
- 3 1級基準点測量においては、既知点を電子基準点(付属標を除く。以下同じ。)のみとすることができる。この場合、既知点間の距離の制限は適用しない。ただし、既知点とする電子基準点は、作業地域に最も近い2点以上を使用するものとする。
- 4 3級基準点測量及び4級基準点測量における既知点は、厳密水平網平均計算及び厳密高低網平均計算又は三次元網平均計算により設置された同級の基準点を既知点とすることができる。ただし、この場合においては、使用する既知点数の2分の1以下とする。

(基準点測量の方式)

第23条 基準点測量は、次の方式を標準とする。

- 一 1級基準点測量及び2級基準点測量は、原則として、結合多角方式により行うものとする。
- 二 3級基準点測量及び4級基準点測量は、原則として、結合多角方式又は単路線方式により行うものとする。
- 2 結合多角方式の作業方法は、次表を標準とする。

9	「 目		区	分 /	1級基準点測量	2級基準点測量	3級基準点測量	4級基準点測量		
	1個の多角網における既知点数					3点以上				
	単位	多角形	多の辺	数	10辺以下	12辺以下				
結					5 辺以下	6 辺以下				
合多	路線	泉の	辺	数	伐採樹木及び地形のは、計画機関の承認 すことができる。	の状況等によって を得て辺数を増や	7 辺以下	10辺以下		
	節点		 D 距	離	250m以上		70m以上	20m以上		
角	24 711	11.5		1 3124	3 km以下	2 km以下	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	20111/20121		
方					GPS測量機を使り 以下とする。					
式	路	線		長	ただし、電子基準 点等のみを既知点 とする場合はこの 限りでない。		1 km以下	500m以下		
	偏心	距離	の制	限	S	∕ e ≧ 6	S:測点間距離 e:偏心距離			
	路	線	図	形	多角網の外周路線は周路線に属する隣接に属する隣接に属する際がら外側40°以下ることを原則とする。とを原則とする。ただし、地形ので得ないときは、こ	接既知点を結ぶ直 の地域内に選点する。 60°以上を原則と の状況によりやむ	50° 同	同 左 50°以下 同 左 60°以上		
	平	均	次	数			簡易水平網平均計 均次数を2次まで			
						、既知点から他の の交点までの辺数	・ 既知点まで、既知 で、既知はないう。	点から交点まで		

- 備 考 2. 「単位多角形」とは、路線によって多角形が形成され、その内部 に路線をもたない多角形をいう。
 - 3. 3~4級基準点測量において、条件式による簡易水平網平均計算を行う場合は、方向角の取付を行うものとする。
- 3 単路線方式の作業方法は、次表を標準とする。

	何	目	区分	_		2級基準点測量 ※		4級基準点測量				
	方	向 角	の取	付	付 既知点の1点以上において方向角の取付を行う。ただし、GPS測量用する場合は、方向角の取付は省略する。							
	路	線(の 辺	数	7辺以下	8 辺以下	10辺以下	15辺以下				
単	新	点	の	数	2点以下	3点以下						
口夕	路	ŕ	泉	長	5 km以下	3 km以下	1.5km以下	700m以下				
路線方式	路	線	図	形	40°以下の地域内に 則とする。 路線の中の夾角は、 する。ただし、地形(新点は、両既知点を結ぶ直線から両側 40°以下の地域内に選点することを原 則とする。						
	準	節点間の距離、偏心距離の制限、平均次数、路線の辺数制限緩和及びGPS 期 規 定測量機を使用する場合の路線図形は、結合多角方式の各々の項目の規定を 準用する。										
	備		老	;	※ やむを得ず単記	路線方式を行う場合	に限る。					

(工程別作業区分及び順序)

- 第24条 工程別作業区分及び順序は、次のとおりとする。
 - 一 作業計画
 - 二選点
 - 三 測量標の設置
 - 四 観測
 - 五 計算
 - 六 品質評価
 - 七 成果等の整理

第2節 作業計画

(要旨)

第25条 作業計画は、第11条の規定によるほか、地形図上で新点の概略位置を決定し、平均計画図を作成する ものとする。

第3節 選点

(要旨)

第26条 本章において「選点」とは、平均計画図に基づき、現地において既知点の現況を調査するとともに、新 点の位置を選定し、選点図及び平均図を作成する作業をいう。

(既知点の現況調査)

第27条 既知点の現況調査は、異常の有無等を確認し、基準点現況調査報告書を作成するものとする。

(新点の選定)

第28条 新点は、後続作業における利用等を考慮し、適切な位置に選定するものとする。

(建標承諾書等)

第29条 計画機関が所有権又は管理権を有する土地以外の土地に永久標識を設置しようとするときは、当該土地 の所有者又は管理者から建標承諾書等により承諾を得なければならない。

(選点図及び平均図の作成)

- 第30条 新点の位置を選定したときは、その位置及び視通線等を地形図に記入し、選点図を作成するものとする。
- 2 平均図は、選点図に基づいて作成し、計画機関の承認を得るものとする。

第4節 測量標の設置

(要旨)

第31条 本章において「測量標の設置」とは、新点の位置に永久標識を設ける作業をいう。

(永久標識の設置)

- 第32条 新点の位置には、原則として、永久標識を設置し、測量標設置位置通知書(法第39条で読み替える法 第21条1項に基づき通知する文書をいう。以下同じ。)を作成するものとする。
- 2 永久標識の規格及び設置方法は、付録5によるものとする。
- 3 設置した永久標識については、写真等により記録するものとする。
- 4 永久標識には、必要に応じ固有番号等を記録したICタグを取り付けることができる。
- 5 3級基準点及び4級基準点には、標杭を用いることができる。 (点の記の作成)
- 第33条 設置した永久標識については、点の記を作成するものとする。

第5節 観測

(要旨)

- 第34条 本章において「観測」とは、平均図等に基づき、トータルステーション(データコレクタを含む。以下「TS」という。)、セオドライト、測距儀等(以下「TS等」という。)を用いて、関係点間の水平角、鉛直角、距離等を観測する作業(以下「TS等観測」という。)及びGPS測量機を用いて、GPS衛星等からの電波を受信し、位相データ等を記録する作業(以下「GPS観測」という。)をいう。
- 2 GPS観測は、GPS以外の測位衛星からの電波を受信し、位相データを記録する作業を含むものとする。
- 3 観測は、TS等及びGPS測量機を併用することができる。
- 4 観測に当たっては、必要に応じ、測標水準測量を行うものとする。 (機器)
- 第35条 観測に使用する機器は、次表に掲げるもの又はこれらと同等以上のものを標準とする。

機器	性能	摘要
1級トータルステーション		1~2級基準点測量
2級トータルステーション		2~3級基準点測量
3級トータルステーション		4級基準点測量
1 級 G P S 測 量 機		1~4級基準点測量
2 級 G P S 測 量 機		1~4級基準点測量
1級セオドライト	別表1による	1~2級基準点測量
2級セオドライト		2~3級基準点測量
3級セオドライト		4級基準点測量

測		距		儀				1	~ 4	級基	表準	点測]] 量
3	級	V	ベ	ル				測	標	水	準	測	量
2	級		標	尺				測	標	水	準	測	量
鋼		巻		尺	JIS	1級			_				

(機器の点検及び調整)

第36条 観測に使用する機器の点検は、観測着手前及び観測期間中に適宜行い、必要に応じて機器の調整を行う ものとする。

(観測の実施)

- 第37条 観測に当たり、計画機関の承認を得た平均図に基づき、観測図を作成するものとする。
- 2 観測は、平均図等に基づき、次に定めるところにより行うものとする。
 - 一 TS等の観測及び観測方法は、次表のとおりとする。ただし、水平角観測において、目盛変更が不可能な機器は、1対回の繰り返し観測を行うものとする。

	\ E/\		2級基準	 		
項	区分	1級基準点測量	1級トータルス テーション、 セオドライト	2級トータルス テーション、 セオドライト	3級基準点測量	4級基準点測量
	読定単位	1 "	1 "	10"	10"	20"
平角	対 回 数	2	2	3	2	2
開観測	水平目盛位 置	0°,90°	0°,90°	0°, 60°, 120°	0°,90°	0°,90°
鉛直角観測	読定単位	1 "	1 " 1 "		10"	20"
親測	対 回 数	1	1	1	1	1
距離	読定単位	1 mm	1 mm	1 mm	1 mm	1 mm
測定	セット数		2	2	2	2

- イ 器械高、反射鏡高及び目標高は、センチメートル位まで測定するものとする。
- ロ TSを使用する場合は、水平角観測、鉛直角観測及び距離測定は、1視準で同時に行うことを原則とする ものとする。
- ハ 水平角観測は、1視準1読定、望遠鏡正及び反の観測を1対回とする。
- ニ 鉛直角観測は、1視準1読定、望遠鏡正及び反の観測を1対回とする。
- ホ 距離測定は、1視準2読定を1セットとする。
- へ 距離測定に伴う気温及び気圧(本章において「気象」という。)の測定は、次のとおり行うものとする。
 - (1) TS又は測距儀を整置した測点(以下「観測点」という。)で行うものとする。ただし、3級基準 点測量及び4級基準点測量においては、気圧の測定を行わず、標準大気圧を用いて気象補正を行うこ とができる。
 - (2) 気象の測定は、距離測定の開始直前又は終了直後に行うものとする。
 - (3) 観測点と反射鏡を整置した測点(以下「反射点」という。)の標高差が400メートル以上のとき

- は、観測点及び反射点の気象を測定するものとする。ただし、反射点の気象は、計算により求めることができる。
- ト 水平角観測において、1組の観測方向数は、5方向以下とする。
- チ 観測値の記録は、データコレクタを用いるものとする。ただし、データコレクタを用いない場合は、観測 手簿に記載するものとする。
- リ TSを使用した場合で、水平角観測の必要対回数に合せ、取得された鉛直角観測値及び距離測定値は、すべて採用し、その平均値を用いることができる。
- 二 GPS観測は、干渉測位方式で行い、観測方法は次表を標準とする。

観	測	方	法		観測時間	データ取得間隔				摘		要			
スタ	ティ	イ ツ	ク	法	60分以上	30秒以下				点測 級					制) 量
短縮ス	くタラ	⁻ イ:	ック	法	20分以上	15秒以下	3	\sim	4	級	基	準	点	測	量
キネー	マテ	イッ	<i>,</i> ク	法	1分以上	5秒以下	4	級		基	準	点		測	量
R T I	к –	G F	S	法	10秒以上	1秒	3	\sim	4	級	基	準	点	測	量
ネッ R T]	ト 5 K ー	7 – G F	ク S	型法	10秒以上	1秒	3	~	4	級	基	準	点	測	量
備				考	※ 観測距 GPS測	離が10kmを超える 量機により120分り	場合	îは、 の観	節測る	点を を行っ	設に	けるた のと	か、する	1級 5。	Z

- イアンテナ高等は、ミリメートル位まで測定するものとする。
- ロ 標高の取付観測において、距離が500メートル以下の場合は、楕円体高の差を高低差として使用できる。
- ハ GPS衛星の作動状態、飛来情報等を考慮し、片寄った配置の使用は避けるものとする。
- 二 GPS衛星の最低高度角は15度を標準とする。ただし、上空視界の確保が困難な場合は、最低高度角を30度まで緩和することができる。
- ホ スタティック法及び短縮スタティック法については、次のとおり行うものとする。
 - (1) 観測図には、同時に複数のGPS測量機を用いて行われる観測(以下「セッション」という。)計画を記入するものとする。
 - (2) 電子基準点のみを既知点として使用する以外の観測は、既知点及び新点を結合する多角路線が閉じた多角形を形成させ、次のいずれかにより行うものとする。
 - (i) 異なるセッションの組み合わせによる点検のための多角形を形成する。
 - (ii) 異なるセッションによる点検のため、1辺以上の重複観測を行う。
 - (3) 観測は1つのセッションを1回行うものとする。
- へ スタティック法を行う場合のGPS衛星の数は、同時に4個以上とする。ただし、観測距離が10キロメートル以上の観測、短縮スタティック法、キネマティック法、RTK-GPS法及びネットワーク型RTK-GPS法を行う場合は5個以上とする。
 - (1) 「RTK-GPS測量」とは、基準となる観測点(以下「固定点」という。)と求点となる観測点 (以下「移動点」という。)に設置したGPS測量機で同時にGPS衛星からの信号を受信し、固定 点で取得した信号を、無線装置等を用いて移動点に転送し、移動点側において即時に基線解析を行う ことで位置を決定する測量手法をいう。なお、観測には、直接観測法と間接観測法がある。
 - (i) 直接観測法は、固定点と移動点で同時にGPS衛星からの信号を観測し、基線解析により得られ

た基線ベクトルを用いて、多角網を構成する方法である。直接観測法による観測距離は、500メ ートル以内を標準とする。

- (ii) 間接観測法は、固定点と2点の移動点でGPS衛星からの信号を同時に観測し、基線解析により得られた2つの基線ベクトルの差を取って観測点間(移動点間)の基線ベクトルを求め、その基線ベクトル用いて、多角網を構成する方法である。間接観測法による観測距離は、直接的に観測する放射状の基線では10キロメートル以内、間接的に求める観測点間では500メートル以内を標準とする。
- (2) 「ネットワーク型RTK-GPS測量」とは、配信事業者(国土地理院の電子基準点網の観測データ配信を受けている者又は、3点以上の電子基準点を基に、測量に利用できる形式でデータを配信している者をいう。以下同じ。)で算出された補正データ等又は面補正パラメータを通信装置により移動局で受信すると同時に、移動局において、GPS衛星から信号を受信し、必要な解析処理を行った後、他の移動局に移動して同様の観測を行い、これを順次繰り返す動的干渉測位方式により行うことをいう。なお、観測には、直接観測法と間接観測法がある。
 - (i) 直接観測法は、配信事業者で算出された補正データ等と移動局の観測データによる基線解析で得られた基線ベクトルを用いて、多角網を構成する方法である。なお、解析計算として補正データを配信事業者から受信し、受信機内で計算を行う方式と、観測データを解析処理事業者に送り、解析処理事業者内で計算を行う方式がある。
 - (ii) 間接観測法は、次のいずれかの方式により行うものとする。
 - 1) 2台同時観測方式による間接観測法は、配信事業者で算出された補正データ等又は面補正パラメータと2点の移動局で同時観測を行った観測データによる基線解析又は誤差バイアス量の補正処理で得られた2つの三次元直交座標差から移動局間の基線ベクトルを求めるものとする。この基線ベクトルを用いて、多角網を構成する方法である。なお、解析計算として補正データを配信事業者から受信し、受信機内で計算を行う方式と、観測データを解析処理事業者に送り、解析処理事業者内で計算を行う方式がある。
 - 2) 1台準同時観測方式による間接観測法は、配信事業者で算出された補正データ等又は面補正パラメータと移動局の観測データによる基線解析又は誤差バイアス量の補正処理を行う。その後、速やかに他方の移動局に移動して同様な観測を行い、基線解析又は誤差バイアス量の補正処理により得られた2つの三次元直交座標差から移動局間の基線ベクトルを求める。この基線ベクトルを用いて、多角網を構成する方法である。なお、1台準同時観測方式を行う場合は、速やかに行うとともに、必ず復観測(同方向も可)を行い、重複による点検を実施する。解析計算として補正データを配信事業者から受信し、受信機内で計算を行う方式と、観測データを解析処理事業者に送り、解析処理事業者内で計算を行う方式がある。
- 三 測標水準測量は、次のいずれかの方式により行うものとする。
 - イ 直接水準測量は、4級水準測量に準じて行うものとする。
 - ロ 間接水準測量は、次のとおり行うものとする。
 - (1) 器械高、反射鏡高及び目標高は、ミリメートル位まで測定するものとする。
 - (2) 間接水準測量区間の一端に2つの固定点を設け、鉛直角観測及び距離測定を行うものとする。
 - (3) 間接水準測量における環の閉合差の許容範囲は、3センチメートルに観測距離(キロメートル単位とする。)を乗じたものとする。ただし、観測距離が1キロメートル未満における許容範囲は3セン

チメートルとする。

- (4) 鉛直角観測及び距離測定は、距離が500メートル以上のときは1級基準点測量、距離が500メートル未満のときは2級基準点測量に準じて行うものとする。ただし、鉛直角観測は3対回とし、できるだけ正方向及び反方向の同時観測を行うものとする。
- (5) 間接水準測量区間の距離は、2キロメートル以下とする。

(観測値の点検及び再測)

- 第38条 観測値について点検を行い、許容範囲を超えた場合は、再測するものとする。
 - 一 TS等による許容範囲は、次表を標準とする。

					2級基達	 		
Ą		Z I	分 /	1級基準点測量	1級トータルス テーション、 セオドライト		3級基準点測量	4級基準点測量
水平角	倍	角	差	15"	20"	30"	30"	60″
開測	観	測	差	8"	10"	20"	20"	40"
鉛直角観測	高度	を定数 の	較差	10"	15"	30″	30″	60″
距離	測分	マット 定値の	内の 較差	2 cm	2 cm	2 cm	2 cm	2 cm
測定	各、	セ ッ タ値の		2 cm	2 cm	2 cm	2 cm	2 cm
	往後較	复観測	値の差	20mm√S	20mm√S	20mm√S	20mm√S	20mm√S
備			考	Sは観測距離	(片道、km単位) と	:する。		

- 二 GPS観測による基線解析の結果はFIX解とする。
- 2 点検の結果は、精度管理表にとりまとめるものとする。

(偏心要素の測定)

- 第39条 基準点で直接に観測ができない場合は、偏心点を設け、偏心要素を測定し、許容範囲を超えた場合は再 測するものとする。
 - 一 GPS観測において、偏心要素のための零方向の視通が確保できない場合は、方位点を設置することができる。
 - 二 GPS観測による方位点の設置距離は200メートルとし、偏心距離の4倍以上を標準とする。なお、観測は第37条第2項第二号の規定を準用する。
 - 三 偏心角の測定は、次表を標準とする。

偏心距	離	機器及び測定方法	測定単位	点検項目・許容範囲
30cm未満	肯	偏心測定紙に方向線を引き、分度器に よって偏心角を測定する。	1°	

30cm以上 2 m未満	偏心測定紙に方向線を引き、計算により 偏心角を算出する。	10'	
2 m以上 10m未満	トータルステーション又はセオドライト を用いて、第37条を準用する	1′	倍角差 120" 観測差 90"
10m以上 50m未満		10"	倍角差 60" 観測差 40"
50m以上 100m未満		1 "	倍角差 30" 観測差 20"
100m以上 250m未満			倍角差 20" 観測差 10"

四 偏心距離の測定は、次表を標準とする。

偏心距離	機器及び測定方法	測定単位	点検項目・許容範囲			
30cm未満	物差により測定する。	mm				
30cm以上 2 m未満	鋼巻尺により2読定、1往復を測定す る。	mm	往復の較差5mm			
2 m以上	80					
50m未満	トータルステーション又は測距儀を用い	mm	第38条を準用する			
50m以上	て、第37条を準用する。	mm	NOOKE -/11/0			
備考	1. 偏心距離が 5 mm未満、かつ、辺長が 1 kmを超す場合は偏心補正計算を省略できる。 2. 偏心距離が10 m以下の場合は、傾斜補正以外の補正は省略できる。					
	乙・ 7冊17中暦141UIII以下り場合7は、79時代 	日エレンスクトリンド	用止は目附じるる。			

五 本点と偏心点間の高低差の測定は、次表を標準とする。

偏心距離	機器及び測定方法	測定単位	点検項目・許容範囲
13/10m 1 / # 1	独立水準器を用いて、偏心点を本点と同 標高に設置する。	_	
	4級水準測量に準じて観測する。ただし、 後視及び前視に同一標尺を用いて片道観 測の測点数を1点とすることができる。	mm	往復の較差20mm√S
30cm以上 100m未満	4級基準点測量の鉛直角観測に準じて測定する。ただし、正、反方向の鉛直角観測に代えて、器械高の異なる片方向による2対回の鉛直角観測とすることができる。	20"	高度定数の較差60″ 高低差の正反較差10cm
100 011	4級水準測量に準じて測定する。	mm	往復の較差 20mm√S
100m以上 250m未満	2~3級基準点測量の鉛直角観測に準じ て測定する。	10"	高度定数の較差30″ 高低差の正反較差15cm
備考	Sは、測定距離(km単位)とする。		

第6節 計算

(要旨)

第40条 本章において「計算」とは、新点の水平位置及び標高を求めるため、次に定めるところにより行うものとする。

- 一 TS等による基準面上の距離の計算は、楕円体高を用いる。なお、楕円体高は、標高とジオイド高から求めるものとする。
- 二 ジオイド高は、次の方法により求めた値とする。
 - イ 国土地理院が提供するジオイドモデルから求める方法
 - ロ イのジオイドモデルが構築されていない地域においては、GPS観測と水準測量等で求めた局所ジオイド モデルから求める方法
- 三 3級基準点測量及び4級基準点測量は、基準面上の距離の計算は楕円体高に代えて標高を用いることができる。この場合において経緯度計算を省略することができる。

(計算の方法等)

- 第41条 計算は、付録6の計算式、又はこれと同精度若しくはこれを上回る精度を有することが確認できる場合は、当該計算式を使用することができる。
- 2 計算結果の表示単位等は、次表のとおりとする。

項目	直角座標 ※	経緯度	標高	ジオイド高	角度	辺 長
単 位	m	秒	m	m	秒	m
位	0.001	0.0001	0.001	0.001	1 0.001	
備考	※ 平面直角座標系に規定する世界測地系に従う直角座標					

- 3 TS等で観測を行った標高の計算は、0.01メートル位までとすることができる。
- 4 GPS観測における基線解析では、以下により実施することを標準とする。
 - 一 計算結果の表示単位等は、次表のとおりとする。

区分項目	単 位	位
基線ベクトル成分	m	0.001

- 二 GPS衛星の軌道情報は、放送暦を標準とする。
- 三 スタティック法及び短縮スタティック法による基線解析では、原則としてPCV (Phase center variation) 補正を行うものとする。
- 四 気象要素の補正は、基線解析ソフトウェアで採用している標準大気によるものとする。
- 五 スタティック法による基線解析では、基線長が10キロメートル未満は1周波で行い、10キロメートル以上は2周波で行うものとする。
- 六 基線解析の固定点の経度と緯度は、固定点とする既知点の経度と緯度を入力し、楕円体高は、その点の標高 とジオイド高から求め入力する。以後の基線解析は、これによって求められた値を順次入力するものとする。
- 七 基線解析に使用する高度角は、観測時にGPS測量機に設定した受信高度角とする。

(点検計算及び再測)

- 第42条 点検計算は、観測終了後に行うものとする。ただし、許容範囲を超えた場合は、再測を行う等適切な措置を講ずるものとする。
 - 一 TS等観測
 - イ すべての単位多角形及び次の条件により選定されたすべての点検路線について、水平位置及び標高の閉合 差を計算し、観測値の良否を判定するものとする。
 - (1) 点検路線は、既知点と既知点を結合させるものとする。

- (2) 点検路線は、なるべく短いものとする。
- (3) すべての既知点は、1つ以上の点検路線で結合させるものとする。
- (4) すべての単位多角形は、路線の1つ以上を点検路線と重複させるものとする。
- ロ TS等による点検計算の許容範囲は、次表を標準とする。

項	区分	1級基準点測量	2級基準点測量	3級基準点測量	4級基準点測量
		差 $10 \text{cm} + 2 \text{cm} \sqrt{N} \Sigma S$	$10\text{cm} + 3\text{cm}\sqrt{N}\Sigma \text{ S}$	$15\text{cm} + 5\text{cm}\sqrt{N}\Sigma \text{ S}$	$15\text{cm} + 10\text{cm}\sqrt{N}\Sigma S$
多路 角線	標高の閉合	差 $20\text{cm} + 5\text{cm}\Sigma\text{ S}/\sqrt{\text{N}}$	$20\text{cm} + 10\text{cm}\Sigma \text{ S}/\sqrt{N}$	$20\text{cm} + 15\text{cm}\Sigma \text{ S}/\sqrt{N}$	$20\text{cm} + 30\text{cm} \Sigma \text{ S}/\sqrt{N}$
標高	差の正反較	差 30cm	20cm	15cm	10cm
備		考 Nは辺数、ΣSは路	線長 (km) とする。		

二 GPS観測

- イ 観測値の点検は、次のいずれかの方法により行うものとする。
 - (1) 点検路線は、異なるセッションの組み合わせによる最少辺数の多角形を選定し、基線ベクトルの環 閉合差を計算する方法
 - (2) 重複する基線ベクトルの較差を比較点検する方法
 - (3) 既知点が電子基準点のみの場合は、2点の電子基準点を結合する路線で、基線ベクトル成分の結合 計算を行い点検する方法
- ロ 点検計算の許容範囲は、次表を標準とする。
 - (1) 環閉合差及び各成分の較差の許容範囲

区 分	許 容 範	囲	摘要
基線ベクトル	水平 (△ N、 △ E)	20 mm \sqrt{N}	N : 辺数
環閉合	善高さ (<i>∆ U</i>)	30 mm \sqrt{N}	△N:水平面の南北方向の閉合差
重複する基準	水平 (△N、△E)	20mm	△E:水平面の東西方向の閉合差
ベクトルの較	善高さ (<i>∆ U</i>)	30mm	$\Delta U:$ 高さ方向の閉合差

(2) 電子基準点のみの場合の許容範囲

	区	分	許容範囲	摘要
結 合 多 角	水平	$(\Delta N, \Delta E)$	$60\text{mm} + 20\text{mm} \sqrt{N}$	N : 辺数 ΔN: 水平面の南北方向の閉合差
又は単路線				$\Delta E :$ 水平面の東西方向の閉合差 $\Delta U :$ 高さ方向の閉合差

2 点検計算の結果は、精度管理表にとりまとめるものとする。 (平均計算)

- 第43条 平均計算は、次に定めるところにより行うものとする。
- 2 既知点1点を固定するGPS測量機による場合の三次元網平均計算は、次のとおり行うものとする。
 - 一 仮定三次元網平均計算の重量 (P) は、次のいずれかの分散・共分散行列の逆行列を用いるものとする。
 - イ 水平及び高さの分散を固定値として求めた値 ただし、分散の固定値は、 $\mathbf{d}_N = (0.004\text{m})^2 \mathbf{d}_F = (0.004\text{m})^2 \mathbf{d}_H = (0.007\text{m})^2 とする。$
 - ロ 基線解析により求められた値。ただし、すべての基線の解析手法、解析時間が同じ場合に限る。
 - 二 仮定三次元網平均計算による許容範囲は、次のいずれかによるものとする。

イ 基線ベクトルの各成分による許容範囲は、次表を標準とする。

項		区分	1級基準点測量	2級基準点測量	3級基準点測量	4級基準点測量
		トルの 残 <i>見</i>	1)/\mama	20mm	20mm	20mm
			$\Delta s = 10 \text{cm} + 4 \text{ cm}$	\sqrt{N}		
水平化	立置の	閉合意	$\dot{\mathbb{E}}$ Δs : 既知点の成	果値と仮定三次元約	圏平均計算結果から	o 求めた距離
			N:既知点まで	の最短辺数		
標高	の閉	合意	É 25cm+4.5cm√N	√を標準とする	N:辺数	

ロ 方位角、斜距離、楕円体比高による場合の許容範囲は、次表を標準とする。

項	[目	\		区	分	1級基準点測量	2級基準点測量	3級基準点測量	4級基準点測量
方	位	角	\mathcal{O}	残	差	5秒	10秒	20秒	80秒
斜	距	離	\mathcal{O}	残	差	$20 \text{mm} + 4 \times 10^{-6}$	D D:測定距离	推	
楕	円体	比比	高	の残	差	$30 \text{mm} + 4 \times 10^{-6}$	D D:測定距离	雅	
						$\Delta s = 10 \text{cm} + 4 \text{cm}$	\sqrt{N}		
水	平位	置	0)	閉合	差	△ s:既知点の成績	果値と仮定三次元約	圏平均計算結果から	o 求めた距離
						N:既知点までの	の最短辺数		
標	高	の	閉	合	差	25 cm $+4.5$ cm \sqrt{N}	- 「を標準とする	N:辺数	

3 既知点2点以上を固定する厳密水平網平均計算、厳密高低網平均計算及び簡易水平網平均計算、簡易高低網平均計算並びに三次元網平均計算は、次のとおり行うものとする。

一 TS等観測

イ 厳密水平網平均計算の重量 (P) には、次の数値を用いるものとする。

- (1) $m_S = 10 \text{ mm}$
- (2) $\gamma = 5 \times 10^{-6}$
- (3) m_t (次表による)

1級基準点測量	2級基準点測量	3級基準点測量	4級基準点測量
1.8"	3. 5"	4.5"	13. 5"

- ロ 厳密水平網平均計算の重量(P)はイを用い、簡易水平網平均計算及び簡易高低網平均計算を行う場合、 方向角については各路線の観測点数の逆数、水平位置及び標高については、各路線の距離の総和(0.01 キロメートル位までとする。)の逆数を重量(P)とする。
- ハ 厳密水平網平均計算及び厳密高低網平均計算による各項目の許容範囲は、次表を標準とする。

項 目	1級基準点測量	2級基準点測量	3級基準点測量	4級基準点測量
一 方 向 の 残 差	12"	15 "		
距離の残差	8 cm	10cm		
単位重量の標準偏差	10"	12"	15"	20"
新点位置の標準偏差	10cm	10cm	10cm	10cm
高 低 角 の 残 差	15 "	20"		

高低角の標準偏差	12"	15"	20"	30"
新点標高の標準偏差	20cm	20cm	20cm	20cm

ニ 簡易水平網平均計算及び簡易高低網平均計算による各項目の許容範囲は、次表を標準とする。

区分項目	3級基準点測量	4級基準点測量
路線方向角の残差	50 "	120"
路線座標差の残差	30cm	30cm
路線高低差の残差	30cm	30cm

二 GPS観測

- イ 新点の標高決定は、次の方法によって求めた値により決定するものとする。
 - (1) 国土地理院が提供するジオイドモデルによりジオイド高を補正する方法
 - (2) (1) のジオイドモデルが構築されていない地域においては、GPS観測と水準測量等により、局 所ジオイドモデルを求めジオイド高を補正する方法
- ロ 三次元網平均計算の重量 (P) は、前項第一号の規定を準用する。
- ハ 三次元網平均計算による各項目の許容範囲は、次表を標準とする。

項 目	1級基準点測量	2級基準点測量	3級基準点測量	4級基準点測量
斜距離の残差	8 cm	10cm		
新点水平位置の標準偏差	10cm	10cm	10cm	10cm
新点標高の標準偏差	20cm	20cm	20cm	20cm

- 4 平均計算に使用するプログラムは、計算結果が正しいものと確認されたものを使用するものとする。
- 5 平均計算の結果は、精度管理表にとりまとめるものとする。

第7節 品質評価

(品質評価)

- 第44条 「品質評価」とは、基準点測量成果について、製品仕様書が規定するデータ品質を満足しているか評価 する作業をいう。
- 2 評価の結果、品質要求を満足していない 項目が発見された場合は、必要な調整を行うものとする。
- 3 作業機関は、品質評価手順に基づき品質評価を実施するものとする。

第8節 成果等の整理

(メタデータの作成)

第45条 基準点成果のメタデータは、製品仕様書に従いファイルの管理及び利用において必要となる事項について、作成するものとする。

(成果等)

- 第46条 成果等は、次の各号のとおりとする。ただし、作業方法によっては、この限りでない。
 - 一 観測手簿
 - 二 観測記簿
 - 三 計算簿
 - 四 平均図
 - 五 成果表

- 六 点の記
- 七 建標承諾書
- 八 測量標設置位置通知書
- 九 基準点網図
- 十 品質評価表
- 十一 測量標の地上写真
- 十二 基準点現況調査報告書
- 十三 成果数値データ
- 十四 点検測量簿
- 十五 メタデータ
- 十六 その他の資料

第3章 水準測量

第1節 要旨

(要旨)

- 第47条 「水準測量」とは、既知点に基づき、新点である水準点の標高を定める作業をいう。
- 2 水準測量は、既知点の種類、既知点間の路線長、観測の精度等に応じて、1級水準測量、2級水準測量、3級水準測量、4級水準測量及び簡易水準測量に区分するものとする。
- 3 1級水準測量により設置される水準点を1級水準点、2級水準測量により設置される水準点を2級水準点、3 級水準測量により設置される水準点を3級水準点、4級水準測量により設置される水準点を4級水準点及び簡易水準測量により設置される水準点を簡易水準点という。

(既知点の種類等)

第48条 既知点の種類及び既知点間の路線長は、次表を標準とする。

区分項目	1級水準測量	2級水準測量	3級水準測量	4級水準測量	簡易水準測量
既知点の種類	一等水準点 1級水準点	一~二等水準点 1~2級水準点			
既知点間の路線長	150km以下	150km以下	50km以下	50km以下	50km以下

(水準路線)

第49条 「水準路線」とは、2点以上の既知点を結合する路線をいう。直接に水準測量で結ぶことができない水 準路線は、渡海(河)水準測量により連結するものとする。

(水準測量の方式)

第50条 水準測量は、次の方式を標準とする。

- 一 直接水準測量方式
- 二 渡海(河)水準測量方式

イ 測量方法は、観測距離に応じて、次表により行うものとする。

浿	量	方	法	観 測 距 離
交	互		法	1級水準測量は約300m以下とする。2~4級水準測量は約450m以下とする。
縚	緯	儀	法	1~2級水準測量は約1km以下とする。
柝	仰ね	じ	法	1~2級水準測量は約2km以下とする。

(工程別作業区分及び順序)

- 第51条 工程別作業区分及び順序は、次のとおりとする。
 - 一 作業計画
 - 二選点
 - 三 測量標の設置
 - 四 観測
 - 五 計算
 - 六 品質評価
 - 七成果等の整理

第2節 作業計画

(要旨)

第52条 作業計画は、第11条の規定によるほか、地形図上で新点の概略位置を決定し、平均計画図を作成する ものとする。

第3節 選点

(要旨)

第53条 本章において「選点」とは、平均計画図に基づき、現地において既知点の現況及び水準路線を調査するとともに、新点の位置を選定し、選点図及び平均図を作成する作業をいう。

(既知点の現況調査)

第54条 既知点の現況調査は、異常の有無等を確認し、基準点現況調査報告書を作成するものとする。 (新点の選定)

第55条 新点は、後続作業における利用等を考慮し、適切な位置に選定するものとする。

(建標承諾書等)

第56条 計画機関が所有権又は管理権を有する土地以外の土地に永久標識を設置しようとするときは、当該土地 の所有者又は管理者から建標承諾書等により承諾を得なければならない。

(選点図及び平均図の作成)

- 第57条 新点の位置を選定したときは、その位置及び路線等を地形図に記入し、選点図を作成するものとする。
- 2 平均図は、選点図に基づいて作成し、計画機関の承認を得るものとする。

第4節 測量標の設置

(要旨)

第58条 本章において「測量標の設置」とは、新点の位置に永久標識を設ける作業をいう。

(永久標識の設置)

- 第59条 新点の位置には、原則として、永久標識を設置し、測量標設置位置通知書を作成するものとする。
- 2 永久標識の規格及び設置方法は、付録5によるものとする。
- 3 設置した永久標識については、写真等により記録するものとする。
- 4 永久標識には、必要に応じ固有番号等を記録したICタグを取り付けることができる。
- 5 4級水準点及び簡易水準点には、標杭を用いることができる。
- 6 永久標識の設置された点については、ネットワーク型RTK-GPS測量の単点観測等により座標を求め、成果表に記載するものとする。また、既知点の座標を求めた場合、当該点の管理者にその取り扱いを確認することができる。

- 一 「単点観測」とは、電子基準点等から、単独で測点の座標を求めることをいう。
- 二 成果数値データファイルには0.1メートル位まで記入するものとする。
- 三 水準点で直接に観測ができない場合は、偏心点を設け、TS等により観測するものとする。 (点の記の作成)
- 第60条 設置した永久標識については、点の記を作成するものとする。

第5節 観測

(要旨)

第61条 本章において「観測」とは、平均図等に基づき、レベル及び標尺等を用いて、関係点間の高低差を観測する作業をいう。

(機器)

第62条 観測に使用する機器は、次表に掲げるもの又はこれらと同等以上のものを標準とする。

	機		器		性	能		摘			要	
1	級	レ	ベ	ル			1	級	水	準	測	量
2	級	レ	ベ	ル			2	級	水	準	測	量
3	級	レ	ベ	ル			3 簡	~ 易	4 級 水	水準	準 測	量 量
1	級	ż	標	尺			1	\sim	2 級	水	準 測	量
2	級	ż	標	尺	別表 1	による	3	\sim	4 級	水	準 測	量
1	級セ	オド	ライ	イト			1	~ 2	級水準	測量	量 (渡湘	毎)
1	級トーク	タルス	テーシ	ョン			1	~ 2	級水準	測量	量 (渡湘	毎)
測		距		儀			1	~ 2	級水準	測量	量 (渡湘	毎)
水	準測	量作	業用電	電 卓								
箱				尺			簡	易	水	準	測	量

- 一 1級水準測量では、気温 2 0 度における標尺改正数が 5 0 μ m/m以下、かつ、I 号標尺とII 号標尺との定数の較差が 3 0 μ m/m以下の 1 級標尺を用いるものとする。
- 二 渡海(河)水準測量でレベルを使用する場合は、気泡管レベル又は自動レベルとする。ただし、自動レベルは交互法のみとする。

(機器の点検及び調整)

第63条 観測に使用する機器は、適宜、点検及び調整を行うものとする。なお、観測による視準線誤差の点検調整における読定単位及び許容範囲は、次表を標準とする。

項			☑分	1級レベル	2級レベル	3級レベル
読	定	単	位	0.01mm	0.1mm	1 mm
許	容	範	囲	0.3mm	0.3mm	3 mm

- 2 点検調整は、観測着手前に次の項目について行い、水準測量作業用電卓又は観測手簿に記録する。ただし、 1級水準測量及び2級水準測量では、観測期間中おおむね10日ごと行うものとする。
 - 一 気泡管レベルは、円形水準器及び主水準器軸と視準線との平行性の点検調整を行うものとする。
 - 二 自動レベル、電子レベルは、円形水準器及び視準線の点検調整並びにコンペンセータの点検を行うものとする。
 - 三 標尺付属水準器の点検を行うものとする。

(観測の実施)

- 第64条 観測は、平均図等に基づき、次に定めるところにより行うものとする。
- 2 直接水準測量
 - 一 観測は、標尺目盛及びレベルと後視又は前視標尺との距離(以下「視準距離」という。)を読定するものとする。
 - イ 視準距離及び標尺目盛の読定単位は、次表を標準とする。なお、視準距離はメートル単位で読定するものとする。

項目	1級水準測量	2級水準測量	3級水準測量	4級水準測量	簡易水準測量
視 準 距 離	最大50m	最大60m	最大70m	最大70m	最大80m
読 定 単 位	0.1mm	1 mm	1 mm	1 mm	1 mm

ロ 観測は、1視準1読定とし、標尺の読定方法は、次表を標準とする。

区分	1 級	水	準 測	量	2 Å	級水	準	測	量	3 簡	~ 4 易	級 水	水準	単 測	量量
観測順序	気泡管レー自動レイ		電子レ	ベル		テレベル レベリ	電	子レ	ベル		気泡 自重	助し	ノベ	ル	
1	後視小目	盛	後	視	後視	小目盛		後	視			後	視		
2	前視小目	盛	前	視	後視	大目盛		後	視			前	視		
3	前視大目	盛	前	視	前視	小目盛		前	視						
4	後視大目	盛	後	視	前視	大目盛		前	視						

- 二 観測は、簡易水準測量を除き、往復観測とする。
- 三 標尺は、2本1組とし、往路と復路との観測において標尺を交換するものとし、測点数は偶数とする。
- 四 1級水準測量においては、観測の開始時、終了時及び固定点到着時ごとに、気温を1度単位で測定するものとする。
- 五 視準距離は等しく、かつ、レベルはできる限り両標尺を結ぶ直線上に設置するものとする。
- 六 往復観測を行う水準測量において、水準点間の測点数が多い場合は、適宜固定点を設け、往路及び復路の観測に共通して使用するものとする。
- 七 1級水準測量においては、標尺の下方20センチメートル以下を読定しないものとする。
- 八 1日の観測は、水準点で終わることを原則とする。なお、やむを得ず固定点で終わる場合は、観測の再開時 に固定点の異常の有無を点検できるような方法で行うものとする。
- 3 渡海(河)水準測量
 - 一 観測は、交互法、経緯儀法及び俯仰ねじ法のいずれかにより行うものとする。
 - 二 観測のセット数、読定単位等は、次表を標準とする。

測量方法 項目	交 互 法	経緯儀法	俯仰ねじ法
観 測 距 離(S)	300m (450m) まで	1 kmまで	2kmまで
使用機器の性能	1級レベル 1級標尺	1級トータルステーション セオドライト 1級レベル、1級標尺 (2級レベル)	俯仰ねじを有する 1 級レベル 1 級標尺

使用機器の数量	1式	2	式			
観 測 条 件		両岸で同	司時観測			
目標板白線の太さ	4 cm×S		4 cm×S			
観測時間帯	観測地点の	南中時前3時間、後4時間	の間に行う			
セット数(n)	60×S	80 × S				
観 測 日 数	n / 25	n ,	/ 40			
目標(標尺)	0.1mm (1 mm)	1秒	0.1mm (1mm)			
の読定単位対岸	1 mm	1秒 距離 (1mm)	俯仰ねじ目盛の 1/10			
計算 自岸器械高		0.1mm (1 mm)				
単位 対岸目標高		0.1mm (1 mm)	0.1mm (1 mm)			
高度角定数差の 許容範囲		5秒 (7秒)				
距離の測定		第37条及び第38条を準 用する				
観 測 方 法	これを1セットとする。 1日の全観測セットの1/2 を経過した時点で、レベル と標尺を対岸に移し替えて 同様の観測を行う。	位置で1視準1読定を1対 回とする2対回のかまでででである。 自力ででででででででででできます。 を1を1を1を1を2ができます。 のででででででででできます。 は対には一般でででででででででででででででででででででででででででででででででででで	読定した では、 では、 では、 では、 では、 では、 では、 では、			
備 考	る。 2. 観測セット数及び日数 まで求め、乗算後の端数	立)、観測日数欄の数字は1日 の算定において、観測距離(は切り上げて整数とする。 い、観測日数が1日に満たた 4級水準測量に適用する。	km単位)を小数点以下1位			

4 新点の観測は、永久標識の設置後24時間以上経過してから行うものとする。 (再測)

第65条 1級水準測量、2級水準測量、3級水準測量及び4級水準測量の観測において、水準点及び固定点によって区分された区間の往復観測値の較差が、許容範囲を超えた場合は、再測するものとする。

一 往復観測値の較差の許容範囲は、次表を標準とする。

項 目	1級水準測量	2級水準測量	3級水準測量	4級水準測量
往復観測値の較差	2.5mm√S	$5 \text{ mm}\sqrt{S}$	$10\text{mm}\sqrt{S}$	$20\text{mm}\sqrt{S}$
備考	Sは観測距離	(片道、km単位)とする。	

- 二 1級水準測量及び2級水準測量の再測は、同方向の観測値を採用しないものとする。 (検測)
- 第66条 1級水準測量及び2級水準測量においては、隣接既知点間の検測を行うものとする。なお、検測における結果と前回の観測高低差との較差の許容範囲は、次表を標準とする。また、検測は、往復観測を原則とする。

区 分 項 目	1級水準測量	2級水準測量
前回の観測高低差との較差	2.5mm√S	$5 \text{ mm}\sqrt{S}$
備 考	Sは観測距離(片道	、km単位)とする。

第6節 計算

(要旨)

- 第67条 本章において「計算」とは、新点の標高を求めるため、次に定めるところにより行うものとする。
 - 一 標尺補正及び正規正標高補正計算(楕円補正)は、1級水準測量及び2級水準測量について行う。ただし、 1級水準測量においては、正規正標高補正計算に代えて正標高補正計算(実測の重力値による補正)を用いる ことができる。また、2級水準測量における標尺補正計算は、水準点間の高低差が70メートル以上の場合に 行うものとし、補正量は、気温20度における標尺改正数を用いて計算するものとする。
 - 二 変動量補正計算は、地盤沈下調査を目的とする水準測量について、基準日を設けて行うものとする。
 - 三 計算は、第64条第2項第一号イの表の読定単位まで算出するものとする。

(計算の方法)

第68条 計算は、付録6の計算式、又はこれと同精度若しくはこれを上回る精度を有することが確認できる場合は、当該計算式を使用することができるものとする。

(点検計算及び再測)

- 第69条 点検計算は、観測終了後に行うものとする。ただし、許容範囲を超えた場合は、再測を行う等適切な措置を講ずるものとする。
 - 一 すべての単位水準環 (新設水準路線によって形成された水準環で、その内部に水準路線のないものをいう。 以下同じ。)及び次の条件により選定されたすべての点検路線について、環閉合差及び既知点から既知点まで の閉合差を計算し、観測値の良否を判定するものとする。
 - イ 点検路線は、既知点と既知点を結合させるものとする。
 - ロ すべての既知点は、1つ以上の点検路線で結合させるものとする。
 - ハ すべての単位水準環は、路線の一部を点検路線と重複させるものとする。
 - 二 点検計算の許容範囲は、次表を標準とする。

項		\	区	分	1級水準測量	2級水準測量	3級水準測量	4級水準測量	簡易水準測量
環	閉	슫	ì	差	$2\mathrm{mm}\sqrt{\mathrm{S}}$	$5\mathrm{mm}\sqrt{\mathrm{S}}$	$10\text{mm}\sqrt{S}$	$20\text{mm}\sqrt{S}$	$40\text{mm}\sqrt{S}$
既知で	7点か の		知点 合	iま 差	15 mm \sqrt{S}	15 mm \sqrt{S}	$15\text{mm}\sqrt{S}$	25 mm \sqrt{S}	50mm√S
備				考	Sは観測距離	(片道、km単位) とする。		

- 2 点検計算の結果は、精度管理表にとりまとめるものとする。 (平均計算)
- 第70条 平均計算は、次に定めるところにより行うものとする。

- 一 直接水準測量の平均計算は、距離の逆数を重量とし、観測方程式又は条件方程式を用いて行うものとする。
- 二 直接水準測量と渡海(河)水準測量が混合する路線の平均計算は、標準偏差の二乗の逆数を重量とし、観測方程式又は条件方程式により行うものとする。
- 三 平均計算による許容範囲は、次表を標準とする。

項 目	1級水準測量	2級水準測量	3級水準測量	4級水準測量	簡易水準測量
単位重量当たりの観測の標準偏差	2 mm	5 mm	10mm	20mm	40mm

- 2 平均計算に使用するプログラムは、計算結果が正しいものと確認されたものを使用するものとする。
- 3 平均計算の結果は、精度管理表にとりまとめるものとする。

第7節 品質評価

(品質評価)

第71条 水準点成果の品質評価は、第44条の規定を準用する。

第8節 成果等の整理

(メタデータの作成)

第72条 水準点のメタデータの作成は、第45条の規定を準用する。

(成果等)

- 第73条 成果等は、次の各号のとおりとする。ただし、作業方法によっては、この限りでない。
 - 一 観測手簿
 - 二 観測成果表及び平均成果表
 - 三 水準路線図
 - 四 計算簿
 - 五 平均図
 - 六 点の記
 - 七 成果数値データ
 - 八 建標承諾書
 - 九 測量標設置位置通知書
 - 十 測量標の地上写真
 - 十一 基準点現況調査報告書
 - 十二 品質評価表
 - 十三 点検測量簿
 - 十四 メタデータ
 - 十五 その他の資料

第4章 復旧測量

(要旨)

第74条 「復旧測量」とは、公共測量によって設置した基準点及び水準点の機能を維持するとともに保全するために実施する作業をいう。

(復旧測量の作業区分)

第75条 復旧測量の作業区分及び作業内容は、次のとおりとする。

- 一 「再設」とは、標識が亡失している場合に、再設置することをいう。
- 二 「移転」とは、標識の現位置が保存上又は管理上不適当である場合に、当該標識の位置を変えて設置する ことをいう。
- 三 「改測」とは、測量成果が現況に適合しなくなったと判断した場合に、現位置を変えることなく測量を行い、必要に応じてその測量成果を修正することをいう。
- 四 「改算」とは、測量成果が現況に適合しなくなったと判断した場合に、改測を行わずに過去の観測値、資料等を用いて計算を行い、必要に応じて測量成果を修正することをいう。
- 2 再設、移転等を行った場合は、測量標新旧位置明細書を作成するものとする。 (基準点の復旧測量)
- 第76条 基準点の復旧測量は、再設、移転、改測又は改算により行うものとする。
- 2 再設、移転、改測又は改算による基準点の復旧測量には、第2章の規定を準用する。
- 3 移転による基準点の復旧測量は、次に定める方法により実施するものとする。
 - 一 TS等による偏心法
 - イ 方向角を観測するために使用する既知点は、隣接の同級以上の基準点とする。
 - ロ 既知点の点検のため、既知点と移転する基準点間の高低差又は辺長の観測を行うものとする。
 - 二 GPS観測による偏心法
 - イ 第37条第2項第二号に定める観測方法のうち、スタティック法により、新点と旧点の同時観測を行い、 移転量を求めるものとする。
 - ロ 移転量の点検として、観測時間を前後半に分けた基線解析を行い、基線ベクトルの較差を点検する。全観 測時間を用いて算出された移転量と前後半に分けた点検計算の各々の較差の許容範囲は、以下を標準とす る。

	 水平 (ΔN , ΔE)	20mm	△N:水平面の南北方向の閉合差
基線ベクトルの較差	$\mathcal{N} + (\Delta N, \Delta E)$	2011111	△ E : 水平面の東西方向の閉合差
	高さ (ΔU)	30mm	△U:高さ方向の閉合差

4 地震等において地殻変動が生じ、電子基準点を含む基本測量成果に異常をきたし、改測等が行われ成果が更新された場合、更新された基本測量成果を基に公共測量の旧観測値を用いて改算するものとする。この場合、改算は、現況に適合しなくなった成果が適切な計算処理で修正可能であることを確認の上、行うものとする。 (水準点の復旧測量)

- 第77条 水準点の復旧測量は、再設、移転又は改測により行うものとする。
- 2 再設、移転又は改測による水準点の復旧測量には、第3章の規定を準用する。
- 3 移転による水準点の復旧測量は、次に定める方法により実施するものとする。
 - 一 直接法
 - イ 新点に別の標識を埋設し、旧点と新点間について往復観測を行う。なお、観測に使用する標尺は旧点から 新点間を測点数1点で取り付ける場合は、1本とする。

ロ 往復観測値の較差の許容範囲は、次表を標準とする。

項	目	区	分	1級水準点	2級水準点	3,4級水準点
往復	観測	値の	較差	$5\mathrm{mm}\sqrt{\mathrm{S}}$	$5\mathrm{mm}\sqrt{\mathrm{S}}$	20 mm \sqrt{S}
読	定	単	位	0.1mm	1 mm	1 mm
備			考	Sは観測距離	(片道、km単	位)とする。

二 固定点法

- イ 旧点と新点間に3点以上の固定点を設け、旧点と固定点間について往復観測を行うものとする。
- ロ 旧点の標識を新点の位置に埋設するものとする。
- ハ 埋設後24時間以上経過後、固定点と新点間について往復観測を行うものとする。
- ニ 固定点を経由して求めた各標高の較差の許容範囲は、次表を標準とする。

項目	区 分	1級水準点	2級水準点	3,4級水準点
往復観測値の	の較差	$3\mathrm{mm}$	3 mm	10mm
読 定 単	i. 位	0.1mm	1 mm	1 mm

ホ 許容範囲を超えた場合は、その原因を調査し、較差の少ない2個以上の平均値を採用するものとする。

第3編 地形測量及び写真測量

第1章 通則

第1節 要旨

(要旨)

- 第78条 本編は、地形測量及び写真測量の作業方法等を定める。
- 2 「地形測量及び写真測量」とは、数値地形図データ等を作成及び修正する作業をいい、地図編集を含むものとする。
- 3 「数値地形図データ」とは地形、地物等に係る地図情報を位置、形状を表す座標データ、内容を表す属性データ等として、計算処理が可能な形態で表現したものをいう。

第2節 製品仕様書の記載事項

(製品仕様書)

第79条 製品仕様書は当該地形測量及び写真測量の概覧、適用範囲、データ製品識別、データの内容及び構造、参照系、データ品質、データ品質評価手順、データ製品配布、メタデータ等について体系的に記載するものとする。

(数値地形図データの精度)

第80条 数値地形図データの位置精度及び地図情報レベルは、次表を標準とする。

地図情報レベル	水平位置の標準偏差	標高点の標準偏差	等高線の標準偏差
250	0.12m以内	0.25m以内	0.5m以内
500	0.25m以内	0.25m以内	0.5m以内
1000	0.70m以内	0.33m以内	0.5m以内
2500	1.75m以内	0.66m以内	1.0m以内
5000	3.5m以内	1.66m以内	2.5m以内
10000	7.0m以内	3.33m以内	5.0m以内

- 2 「地図情報レベル」とは、数値地形図データの地図表現精度を表し、数値地形図における図郭内のデータの平 均的な総合精度を示す指標をいう。
- 3 地図情報レベルと地形図縮尺の関係は、次表のとおりとする。

地図情報レベル	相当縮尺
250	1/250
500	1/500
1000	1/1,000
2500	1/2, 500
5000	1/5, 000
10000	1/10, 000

第3節 測量方法

(要旨)

第81条 製品仕様書で定めた数値地形図データ等を作成するための測量方法は、第2章から第9章までの規定に示す方法に基づき実施するものとする。

第4節 図式

(図式)

- 第82条 数値地形図データの図式は、目的及び地図情報レベルに応じて適切に定めるものとする。
- 2 地図情報レベル500から5000までの場合は、付録7を標準とする。
- 3 地図情報レベル10000は基本測量における1万分1地形図図式を標準とする。
- 4 地図情報レベルごとの地図項目の取得分類基準、数値地形図データのファイル仕様、数値地形図データファイル説明書、分類コード等は、付録7を使用することができる。

第2章 現地測量

第1節 要旨

(要旨)

第83条 「現地測量」とは、現地においてTS等又はRTK-GPS法若しくはネットワーク型RTK-GPS 法を用いて、又は併用して地形、地物等を測定し、数値地形図データを作成する作業をいう。

(準拠する基準点)

第84条 現地測量は、4級基準点、簡易水準点又はこれと同等以上の精度を有する基準点に基づいて実施するものとする。

(数値地形図データの地図情報レベル)

第85条 現地測量により作成する数値地形図データの地図情報レベルは、原則として1000以下とし250、 500及び1000を標準とする。

(工程別作業区分及び順序)

- 第86条 工程別作業区分及び順序は、次のとおりとする。
 - 一 作業計画
 - 二 基準点の設置
 - 三 細部測量
 - 四 数值編集
 - 五 数値地形図データファイルの作成
 - 六 品質評価
 - 七成果等の整理

(機器及びシステム)

第87条 TS等又はRTK-GPS法若しくはネットワーク型RTK-GPS法を用いて実施する現地測量及 びデータファイルの作成に使用する機器及びシステムは、次表のもの又はこれと同等以上のものを標準とする。

機器	性能	読 取 範 囲
1級トータルステーション		
2級トータルステーション		
3級トータルステーション	別表1による	
1級GPS測量機		
2級GPS測量機		
		計測基図の図郭内の読取りが
デジタイザ		
	読取精度 0.3mm 以内	可能なこと
	分解能 0.1mm 以内	計測基図の図郭内の読取りが
スキャナ	読取精度 0.25%以内(任意の2	可能なこと
	点間)	

自動製図機(プリンタ等)	描画精度 0.1mm 以内 位置精度 0.2mm 以内	
図形編集装置	電子計算機及びスクリーンモニタ	一、必要に応じてデジタイザで構
	成されるもの。	

第2節 作業計画

(要旨)

第88条 作業計画は、第11条の規定によるほか、工程別に作成するものとする。

第3節 基準点の設置

(要旨)

- 第89条 「基準点の設置」とは、現地測量に必要な基準点を設置する作業をいう。
- 2 基準点の配点密度は、既設点を含め、次表を標準とする。ただし、長狭な地域については、延長と幅を考慮し、配点密度を定めるものとする。

10,000 m あたりの配点密度					
地域市街地が山地					
250	7 点	6 点	7 点		
500	6 点	5 点	6 点		
1000	5 点	4 点	4 点		

3 基準点の設置については、第2編の規定を準用する。

第4節 細部測量

第1款 TS等による細部測量

(要旨)

- 第90条 本款において「細部測量」とは、基準点又は次条第1項のTS点にTS等の観測機器を整置し、地形、 地物等を測定し、数値地形図データを取得する作業をいう。
- 2 細部測量における地上座標値は、ミリメートル単位とする。
- 3 細部測量は、次のいずれかの方法を用いるものとする。
 - ー オンライン方式 携帯型パーソナルコンピュータ等の図形処理機能を用いて、図形表示しながら計測及び編集を現地で直接行う方式(電子平板方式を含む)
 - 二 オフライン方式 現地でデータ取得だけを行い、その後取り込んだデータコレクタ内のデータを図形編集装置に入力し、図形処理を行う方式

(TS点の設置)

- 第91条 地形、地物等の状況により、基準点にTS等を整置して細部測量を行うことが困難な場合は、TS点を設置することができる。
- 2 TS点は、基準点にTS等を整置して2対回以上測定し、放射法により設置するものとする。
- 3 TS点の精度は、次表を標準とする。

精度	水平位置	標高
地図情報レベル	(標準偏差)	(標準偏差)
500	0.1m以内	0.1m以内
1000	0.1m以内	0.1m以内

2500	0.2m以内	0.2m以内
------	--------	--------

(地形、地物等の測定)

- 第92条 TS等による地形、地物等の水平位置及び標高の測定は、放射法、支距法等による。
- 2 細部測量を実施した場合は、取得した数値地形図データについて編集後に重要事項を確認するとともに必要部分を現地において測定するものとする。
- 3 測定した座標値等には、原則として、その属性を表すための分類コードを付すものとする。
- 4 地形、地物等の測定は、次表を標準とする。

地図情報レベル	機器、システム区分	水平角観 測対回数	距 離 測定回数	放射距離の制限
500 以下	トータルステーション 2 級	0.5	1	150m 以内
	トータルステーション 3 級	0.5	1	100m 以内
1000以上	トータルステーション 2 級	0.5	1	200m 以内
	トータルステーション 3 級	0.5	1	150m 以内

- 5 TS等による地形、地物等の測定は次のとおりとする。
 - 一 地形は、地性線及び標高値を測定し、図形編集装置によって等高線描画を行うものとする。
 - 二 標高点の密度は、地図情報レベルに4センチメートルを乗じた値を辺長とする格子に1点を標準とし、標高点数値はセンチメートル単位で表示するものとする。
 - 三 細部測量では、地形、地物等の測定を行うほか、編集及び編集した図形の点検に必要な資料(以下本編において「測定位置確認資料」という。)を作成するものとする。
 - 四 測定位置確認資料は、編集時に必要となる地名、建物等の名称のほか、取得したデータの結線のための情報等とし、次のいずれかの方法により作成するものとする。
 - イ 現地において図形編集装置に地名、建物の名称、結線情報等を入力する方法
 - ロ 写真等で現況等を記録する方法
- 6 補備測量は、次のとおり行うものとする。
 - 一 現地において確認及び補備すべき事項は、次のとおりとする。
 - イ 編集作業で生じた疑問事項及び重要な表現事項
 - ロ編集困難な事項
 - ハ 現地調査以降に生じた変化に関する事項
 - ニ 境界及び注記
 - ホ 各種表現対象物の表現の誤り及び脱落
 - 二 現地において実施する補備測量は、基準点、TS点及び編集済データに表現されている確実かつ明確な点に 基づいて行うものとする。
 - 三 補備測量の結果は、図形編集装置等の図形編集機能を用いて編集及び修正するものとする。
- 7 分類コードは付録7の数値地形図データ取得分類基準を標準とし、適宜略コード等を使用することができる。 ただし、略コード等を用いた場合は、数値編集において数値地形図データ取得分類基準に変更しなければならない。

第2款 RTK-GPS法を用いる細部測量

(要旨)

第93条 本款において「細部測量」とは、RTK-GPS観測により基準点又はTS点と地形、地物等の相対的

位置関係を求め、数値地形図データを取得する作業をいう。

- 2 細部測量における地上座標値は、0.001メートル単位とする。(地形、地物等の測定)
- 第94条 RTK-GPS観測による地形、地物等の水平位置及び標高の測定は、干渉測位方式により行うものとする。
- 2 RTK-GPS観測は、放射法により1セット行うこと。セット内の観測回数等は、次表を標準とする。

使用衛星数	観 測 回 数	データ取得間隔
5衛星以上	FIX 解を得てから 10 エポック以上	1秒

- 3 初期化を行う観測点では、次の方法で観測値の点検を行い、次の観測点に移動するものとする。
 - 一 点検のために1セットの観測を行うこと。ただし、観測は観測位置が明確な標杭等で行うものとする。
 - 二 1セットの観測終了後に再初期化を行い、2セット目の観測を行うものとする。
 - 三 再初期化した2セット目の観測値を採用値として観測を継続するものとする。
 - 四 2セットの観測による点検に代えて、既知点で1セットの観測により点検することができる。
- 4 セット間較差の許容範囲は、次表を標準とする。

項目	許 容	範 囲	摘 要
セット間較差	ΔN , ΔE 2	20mm	X、Y座標、H(標高)の比較
ピクト同株人生	ΔU 3	30mm	でも可

- 5 観測の途中で再初期化する場合は、本条第3項の観測を行うものとする。
- 6 RTK-GPS観測における観測距離及び機器の点検は、第2編の規定を準用する。
- 7 地形、地物等の測定精度は、地図情報レベルに 0.3 ミリメートルを乗じた値とし、標高は主曲線間隔の 4分の 1 以内とする。
- 8 地形、地物等の測定終了後に、データ解析システムにデータを転送し、計算機の画面上で編集及び点検を行うものとする。
- 9 地形は、地性線を測定し、データ処理システムによって等高線等の描画を行うものとする。
- 10 標高点の密度は、地図情報レベルに4センチメートルを乗じた値を辺長とする格子に1点を標準とし、標高点数値は、0.01メートル単位で表示するものとする。
- 11 細部測量では、地形、地物等の測定を行うほか、測定位置確認資料を作成するものとする。
- 12 測定位置確認資料は、編集時に必要となる地名、建物等の名称のほか、取得したデータの結線のための情報等とし、次のいずれかの方法により作成するものとする。
 - 一 現地において図形編集装置に地名、建物の名称、結線情報等を入力する方法
 - 二 写真等で現況等を記録する方法

第3款 ネットワーク型RTK-GPS法を用いる細部測量

(要旨)

- 第95条 本款において「細部測量」とは、ネットワーク型RTK-GPS観測により基準点又はTS点と地形、地物等の相対的位置関係を求め、数値地形図データを取得する作業をいう。
- 2 細部測量における地上座標値は、0.001メートル単位とする。 (地形、地物等の測定)
- 第96条 ネットワーク型RTK-GPS観測による地形、地物等の水平位置及び標高の測定は、単点観測法により行うものとする。ただし、標高の測定については、必要に応じて水準測量により行うことができる。

- 2 セット間較差の許容範囲及び観測値の点検等は、第94条第4項の規定を準用する。
- 3 単点観測法により作業地域の既知点との整合を図る場合は、次の方法により行うものとする。
 - 一 整合を図る既知点数は、3点以上を標準とする。
 - 二 整合を図る既知点は、該当地区の周辺を囲むように配置するものとする。ただし、地形の形状によりやむ を得ない場合にはこの限りでない。
 - 三 既知点での観測は、第94条第2項の規定を準用する。
 - 四 水平の整合処理は、座標補正として次により行うものとする。
 - イ 座標補正は、平面直角座標系上で行うことを標準とする。
 - ロ 座標補正に用いる既知点数は、3点以上を標準とする。
 - ハ 座標補正の変換手法は適切な方法を採用するものとする。
 - ニ 座標補正を行った地形データについては、当該地形データと隣接する1点以上の地形データで、座標補正 前と座標補正後の距離の点検を行うものとする。点検は平面直角座標系上で行うものとする。
 - ホ 座標補正前後の距離の較差の許容範囲は、次表を標準とする。

点検距離	許容範囲
500m 以上	点検距離の 1/10,000
500m 以内	50mm

- 五 高さの整合処理は、標高変換として次により行うものとする。
 - イ 標高補正は、明確な標高上で行うことを標準とする。
 - ロ 標高補正に用いる既知点数は、3点以上を標準とする。
 - ハ 標高補正の変換手法は適切な方法を採用するものとする。

第4款 TS等及びRTK-GPS法を併用する細部測量又はTS等及びネットワーク型RTK-GPS法を併用する細部測量

(要旨)

第97条 本款において「細部測量」とは、TS等及びRTK-GPS法及びTS等及びネットワーク型RTK-GPS法により新たにTS点を設置し、そのTS点から地形、地物等の想定的位置関係を求め、数値地形図データを取得する作業をいう。

(TS点の設置)

- 第98条 地形、地物等の状況により基準点にGPS測量機又はTS等を整置して、細部測量を行うことが困難な場合は、TS点を設置する。TS点の較差は、第91条第3項の規定を準用する。
- 2 RTK-GPS法を用いる場合は、基準点にGPS測量機又はTS等を整置し、放射法によりTS点を設置するものとする。
- 3 RTK-GPS法を用いてTS点を設置する場合は、第94条の規定を準用する。
- 4 ネットワーク型RTK-GPS法を用いてTS点を設置する場合は、単点観測法により行うことができる。ただし、標高の測定については、必要に応じて水準測量により行うことができる。
- 5 ネットワーク型RTK-GPS法を用いてTS点を設置する場合の観測は、第94条第2項の規定を準用する。
- 6 ネットワーク型RTK-GPS法による観測は、1セット目を採用し、衛星配置が異なるよう時間をおいて 2セットを行うか、又は異なる仮想点(移動局からその概略位置情報を通信装置により配信事業者に送信し、配 信事業者で移動局周辺3点以上の電子基準点での観測値を利用して、概略位置に設ける座標をいう。以下同じ。) を基に点検観測を行うものとする。較差の許容範囲は第94条第4項の規定を準用する。また、既知点成果との 較差の許容範囲は、水平位置は地図情報レベルに0.3ミリメートルを乗じた値とし、標高は主曲線間隔の4分

の1以内とする。

(地形、地物等の測定)

- 第99条 RTK-GPS観測による地形、地物等の水平位置及び標高の測定は、放射法により行うものとする。
- 2 ネットワーク型RTK-GPS観測による地形、地物等の水平位置及び標高の測定は、単点観測法により行う ものとする。ただし、標高の測定については、必要に応じて水準測量により行うことができる。

第5節 数值編集

(要旨)

第100条 本節において「数値編集」とは、細部測量の結果に基づき、図形編集装置を用いて地形、地物等の数値地形図データを編集し、編集済データを作成する作業をいう。

(数値編集の点検)

- 第101条 数値編集の点検は、編集済データ及びその出力図を用いてスクリーンモニター又は自動製図機等によるその出力図を用いて行うものとする。
- 2 編集済データの論理的矛盾等の点検は、点検プログラム等により行うものとする。

第6節 数値地形図データファイルの作成

(要旨)

第102条 本節において「数値地形図データファイルの作成」とは、製品仕様書に従って編集済データから数値 地形図データファイルを作成し、電磁的記録媒体に記録する作業をいう。

第7節 品質評価

(品質評価)

第103条 数値地形図データファイルの品質評価は、第44条の規定を準用する。

第8節 成果等の整理

(メタデータの作成)

第104条 数値地形図データファイルのメタデータの作成は、第45条の規定を準用する。 (成果等)

- 第105条 成果等は、次の各号のとおりとする。
 - 一 数値地形図データファイル
 - 二 品質評価表
 - 三 メタデータ
 - 四 その他の資料

第3章 空中写真測量

第1節 要旨

(要旨)

第106条 「空中写真測量」とは、空中写真(数値化された空中写真を含む。以下同じ。)を用いて数値地形図 データを作成する作業をいう。

(数値地形図データの地図情報レベル)

第107条 空中写真測量により作成する数値地形図データの地図情報レベルは、500、1000、2500、5000及び10000を標準とする。

(工程別作業区分及び順序)

- 第108条 工程別作業区分及び順序は、次のとおりとする。
 - 一 作業計画

- 二 標定点の設置
- 三 対空標識の設置
- 四 撮影
- 五、刺針
- 六 現地調査
- 七空中三角測量
- 八数值図化
- 九数值編集
- 十 補測編集
- 十一 数値地形図データファイルの作成
- 十二 品質評価
- 十三 成果等の整理

第2節 作業計画

(要旨)

第109条 作業計画は、第11条の規定によるほか、工程別に作成するものとする。 第3節 標定点の設置

(要旨)

第110条 「標定点の設置」とは、既設点のほかに空中三角測量及び数値図化において空中写真の標定に必要な 基準点又は水準点(以下「標定点」という。)を設置する作業をいう。

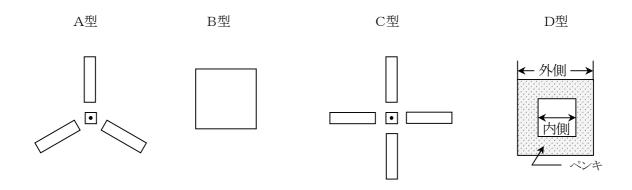
(標定点の精度)

第111条 標定点の精度は、数値地形図データの地図情報レベルに応じて、次表を標準とする。

精 度 地図情報レベル	水平位置 (標準偏差)	標高美)
500	0.1m以内	0.1m以内
1000	0.1m以内	0.1m以内
2500	0.2m以内	0.2m以内
5000	0.2m以内	0.2m以内
10000	0.5m以内	0.3m以内

(方法)

- 第112条 標定点の設置は、基準点にあっては、既設点の配点状況により1級基準点測量、2級基準点測量、3級基準点測量又は4級基準点測量に準じて行い、水準点にあっては、簡易水準測量に準じて行うものとする。ただし、前条に規定する精度を確保し得る範囲内において、既知点間の距離、標定点間の距離、路線長等は、この限りでない。
- 2 空中写真撮影後に写真上で明瞭な構造物が観測できる場合、標定点測量によりその地物上で標定点測量を行い対空標識に代えることができる。


(成果等)

- 第113条 成果等は、次の各号のとおりとする。
 - 一 標定点成果表
 - 二標定点配置図及び水準路線図


- 三 標定点測量簿及び同明細簿
- 四 精度管理表
- 五 その他の資料 第4節 対空標識の設置

(要旨)

- 第114条 「対空標識の設置」とは、空中三角測量及び数値図化において基準点、水準点、標定点等(以下この 節において「基準点等」という。)の写真座標を測定するため、基準点等に一時標識を設置する作業をいう。 (対空標識の規格及び設置等)
- 第115条 対空標識は、拡大された空中写真上で確認できるように、空中写真の縮尺又は地上画素寸法等を考慮し、その形状、寸法、色等を選定するものとする。
 - 一 対空標識の形状は、次のとおりとする。

E型(樹上)

二 対空標識の寸法は、次表を標準とする。

形状地図情報レベル	A型、C型	B型、E型	D	型	厚さ
500	$20~\mathrm{cm} \times 10~\mathrm{cm}$	20 cm×20 cm	内侧 20 am	• 外側 70 cm	
1000	$30 \text{ cm} \times 10 \text{ cm}$	30 cm×30 cm	P 外則 SU CIII	・ クト 則 10 CIII	4
2500	45 cm×15 cm	45 cm×45 cm	内側 50 cm	·外側 100 cm	mm 5 5
5000	90 cm×30 cm	90 cm×90 cm	内側 100 cm	•外側 200 cm	o mm
10000	150 cm×50 cm	150 cm×150 cm	内側 100 cm	•外側 200 cm	

- 三 対空標識の基本型は、A型及びB型とする。
- 四 対空標識板の色は白色を標準とし、状況により黄色又は黒色とする。
- 2 対空標識の設置に当たっては、次の各号に定める事項に留意する。
 - 一 対空標識は、あらかじめ土地の所有者又は管理者の許可を得て、堅固に設置する。
 - 二 対空標識の各端点において、天頂からおおむね45度以上の上空視界を確保する。
 - 三 バックグラウンドの状態が良好な地点を選ぶものとする。
 - 四 樹上に設置する場合は、付近の樹冠より50センチメートル程度高くするものとする。
 - 五 対空標識の保全等のために標識板上に次の事項を標示する。標示する大きさは、標識板1枚の3分の1以下とする。樹上等に設置する場合は、標示杭をもって代えることができる。
 - イ 公共測量
 - 口 計画機関名
 - ハ 作業機関名
 - ニ 保存期限(年月日まで)
 - ト 設置完了後、対空標識設置明細票に設置点付近の見取図を記載し、写真の撮影を行うものとする。
- 3 設置した対空標識は、撮影作業完了後、速やかに現状を回復するものとする。

(対空標識の偏心)

- 第116条 対空標識を基準点等に直接設置できない場合は、基準点等から偏心して設置するものとする。
- 2 対空標識を偏心して設置する場合は、偏心点に標杭を設置し、これを中心として対空標識板を取り付けるものとする。

(偏心要素の測定及び計算)

第117条 基準点等から偏心して対空標識を設置した場合は、偏心距離及び偏心角(以下「偏心要素」という。) を測定し、偏心計算を行うものとする。

(対空標識の確認及び処置)

- 第118条 撮影作業終了後は、直ちに空中写真上に対空標識が写っているかどうかを確認しなければならない。
- 2 対空標識が明瞭に確認できない場合は、対空標識設置総数のおおむね30パーセントを超えない範囲で、刺針に代えることができる。
- 3 対空標識の確認は、拡大された写真上で行うものとする。
- 4 対空標識点明細票等は、原則として、地区単位に作成する。 (成果等)
- 第119条 成果等は、次の各号のとおりとする。

- 一 対空標識点明細票
- 二 偏心計算簿
- 三 対空標識点一覧図
- 四 精度管理表
- 五 その他の資料

第5節 撮影

第1款 要旨

(要旨)

- 第120条 「撮影」とは、測量用空中写真を撮影する作業をいい、後続作業に必要な写真処理及び数値写真の作成工程を含むものとする。
- 2 GPS/IMU装置(空中写真の露出位置を解析するため、航空機搭載のGPS及び空中写真の露出時の傾きを検出するための3軸のジャイロ及び加速度計で構成されるIMU(慣性計測装置)、解析ソフトウェア、電子計算機及び周辺機器で構成されるシステムで、作業に必要な精度を有するものをいう。以下同じ)を用いた撮影は、外部標定要素の同時取得及びデータ処理を含むものとする。

第2款 機材

(航空機及び撮影器材)

- 第121条 航空機は、次の性能を有するものとする。
 - 一 撮影に必要な装備をし、所定の高度で安定飛行を行えること。
 - 二 撮影時の飛行姿勢、フィルム航空カメラ及びデジタル航空カメラ (以下「航空カメラ」という。)の水平 規正及び偏流修正角度のいずれにも妨げられることなく常に写角が完全に確保されていること。
 - 三 GPS/IMU装置を用いた撮影を行う場合は、GPSのアンテナが機体頂部に取り付け可能であること。
- 2 フィルム航空カメラは、次の性能を有するものを標準とする。
 - 一 フィルム航空カメラは、広角航空カメラであること。ただし、撮影地域の地形その他の状況により、普通角 又は長焦点航空カメラを用いることができる。
 - 二 フィルム航空カメラは、撮影に使用するフィルターと組み合わせた画面距離及び歪曲収差の検定値が、
 - 0.01ミリメートル単位まで明確なものであること。
 - 三 カラー空中写真撮影に使用するフィルム航空カメラは、色収差が補正されたものであること。
 - 四 GPS/IMU装置を用いた撮影を行う場合は、IMUがフィルム航空カメラ本体に取り付け可能であること。
- 3 フィルムは、次の性能を有するものを標準とする。
 - 一 写真処理による伸縮率の異方性が 0.01パーセント以下であること。
 - 二 伸縮率の異方性及び不規則伸縮率は、相対湿度 1パーセントについて0.0025パーセント以下である こと。
 - 三 フィルムの感色性は、特に指定された場合を除き、パン・クロマチックであること。
- 4 デジタル航空カメラは、次の性能を有するものを標準とする。
 - デジタル航空カメラは、撮像素子を装備し取得したデジタル画像を数値写真として出力できること。
 - 二 デジタル航空カメラは、フレーム型とし所要の面積と所定の地上画素寸法を確保できること。
 - 三 デジタル航空カメラは、撮影に使用するフィルターと組み合わせた画面距離及び歪曲収差の検定値が 0.01ミリメートル単位まで明瞭なものであること。
 - 四 カラー数値写真に使用するデジタル航空カメラは、色収差が補正されたものであること。

- 五 GPS/IMU装置を構成するIMUが装備されていること。
- 六ジャイロ架台を装備していること。
- 5 デジタル航空カメラの撮像素子は、次の性能を有するものを標準とする。
 - 一 破損素子が少ないこと。
 - 二 ラジオメトリック解像度は、赤、緑、赤等の各色12ビット以上であること。
 - 三 ノイズが少ない高画質の画像が出力できること。
- 6 デジタル航空カメラは、GPS/IMU装置のボアサイトキャリブレーションにあわせて複眼の構成を点検するものとし、点検結果は同時調整精度管理表に整理するものとする。また、システム系統や撮像素子等についても異常がないかを確認するものとする。

(GPS/IMU装置)

第122条 GPS/IMU装置の性能は、次表のとおりとする。

項	目	性能(精度)
	位置	0. 3m
GPS	高さ	0. 3m
	取得間隔	1 秒
	ローリング角	0.015度
IMU	ピッチング角	0.015度
1 1010	ヘディング角	0.035度
	取得間隔	0.016秒

- 一 GPS受信アンテナは、航空機の頂部に確実に固定できること。
- 二 GPS受信機は、2周波で搬送波位相データを1秒以下の間隔で取得できること。
- 三 IMUは、センサ部の3軸の傾き及び加速度を計測できること。
- 四 I MUは、航空カメラ本体に取り付けできること。
- 五 キネマティックGPS解析ソフトウェアは、次のものを有するものを標準とする。
 - イ キネマティックGPS解析にて基線ベクトル解析ができること。
 - ロ 解析結果の評価項目を表示できること。
- 六 最適軌跡解析ソフトウェアは、次のものを有するものを標準とする。
 - イ 空中写真の露出された位置及び傾きが算出できること。
 - ロ 解析結果の評価項目を表示できること。
- 2 GPS/IMU装置は、ボアサイトキャリブレーションを実施したものを用い、キャリブレーションの有効期間は6ヶ月とする。ただし、この期間にレンズの取り外し等が行われた場合には、再度キャリブレーションを行うものとする。

(空中写真の数値化に使用する機器等)

- 第123条 フィルム空中写真の数値化に使用する主要な機器は、次の各項に掲げるもの又はこれらと同等以上の 性能を有するものを標準とする。
- 2 空中写真用スキャナは、空中写真のロールフィルムをスキャンし、数値写真を画像形式で取得及び記録する機能を有するスキャナ、ソフトウェア、電子計算機及び周辺機器で構成されるシステムで、作業に必要な精度を保持できる次表の性能を有するものを標準とする。

項目	性能(精度)
光学分解能	0.01mm 以内
スキャンサイズ	240mm×240mm以上
数値写真の色階調	各色 8bit(フルカラー)以上
数値写真の幾何精度	0.002mm (標準偏差) 以内

- 3 空中写真用スキャナは、機器メーカーが推奨する定期点検を行うとともに、作業着手前に所要の精度を確認するため、各スキャナが保有する自己点検機能により点検するものとする。
- 4 空中写真用スキャナの点検に使用する格子板は、5×5点以上の格子密度を有し、230ミリメートル× 230ミリメートル範囲の幾何精度を検証可能な各空中写真用スキャナに付属する精密格子板とし、第三者機関 による検定を受けたものとする。
- 5 デジタルステレオ図化機は、ステレオ視可能な数値写真からステレオモデルを作成及び表示し、数値地形図データを数値形式で取得及び記録する機能等を有するソフトウェア、電子計算機及び周辺機器から構成されるシステムで、作業に必要な精度を保持できる性能を有するものとする。
- 6 デジタルステレオ図化機の構成及び機能は、次のものを標準とする。
 - ー デジタルステレオ図化機は、電子計算機、ステレオ視装置、スクリーンモニター及び三次元マウス又はX Yハンドル、Z 盤等で構成されるもの。
 - 二 内部標定、相互標定及び絶対標定の機能又は外部標定要素によりステレオ表示できる性能を有すること。
 - 三 X、Y、Zの座標値及び所定のコードが入力及び記録できる性能を有すること。
 - 四 0. 1 画素以内まで画像計測ができる性能を有すること。

第3款 撮影

(空中写真の撮影縮尺及び地上画素寸法)

第124条 空中写真の撮影縮尺及び数値写真の地上画素寸法は、地図情報レベル等に応じて定めるものとする。 2 フィルム航空カメラで撮影する空中写真の撮影縮尺及び地図情報レベルとの関連は、次表を標準とする。

地図情報レベル	撮影縮尺
500	1/3,000 ~ 1/4,000
1000	1/6,000 ~ 1/8,000
2500	1/10,000 ~ 1/12,500
5000	1/20,000 ~ 1/25,000
10000	1/30,000

- 3 計画機関が指示し、又は承認した場合は、撮影縮尺を標準の80パーセントを限度として小さくすることができる。
- 4 デジタル航空カメラで撮影する数値写真の地上画素寸法及び地図情報レベルとの関連は、次表を標準とする。

地図情報レベル	地上画素寸法 (式中のB:基線長、H:撮影高度)		
500	$90 \text{ mm} \times 2 \times \text{B[m]} \div \text{H[m]} \sim 120 \text{ mm} \times 2 \times \text{B[m]} \div \text{H[m]}$		
1000	$180 \text{ mm} \times 2 \times \text{B[m]} \div \text{H[m]} \sim 240 \text{ mm} \times 2 \times \text{B[m]} \div \text{H[m]}$		
2500	$300 \text{ mm} \times 2 \times \text{B[m]} \div \text{H[m]} \sim 375 \text{ mm} \times 2 \times \text{B[m]} \div \text{H[m]}$		
5000	$600 \text{ mm} \times 2 \times \text{B[m]} \div \text{H[m]} \sim 750 \text{ mm} \times 2 \times \text{B[m]} \div \text{H[m]}$		
10000	900 mm× 2×B[m]÷H[m]		

5 平坦地の撮影は、計画機関が指示し、又は承認した場合には、地上画素寸法を標準の160パーセントを限度 として大きくすることができる。

(撮影計画)

- 第125条 撮影計画は、撮影区域ごとに次の各号の条件を考慮して作成するものとする。
 - 一 地形等の状況により、実体空白部を生じないようにする。
 - 二撮影コースは、基準点の配置を考慮する。
 - 三 同一コースは、直線かつ等高度で撮影する。
 - 四 同一コース内の隣接空中写真との重複度は60パーセント、隣接コースの空中写真との重複度は30パーセントを標準とする。ただし、地形等の状況及び用途によっては、同一コース内又は隣接コースのどちらについても、重複度を増加させることができる。
- 2 撮影計画においては、撮影区域を完全にカバーするため、撮影コースの始めと終わりの撮影区域外をそれぞれ 最低1モデル以上撮影するものとする。
- 3 撮影基準面は、原則として、撮影区域に対して一つを定めるが、比高の大きい区域にあっては、数コース単位に設定することができる。
- 4 フィルム航空カメラを用いる場合の対地高度は、撮影縮尺及びフィルム航空カメラの画面距離から求める。撮 影高度は、対地高度に撮影区域内の撮影基準面高又は平均標高を加えたものとする。
- 5 デジタル航空カメラを用いる場合の対地高度は、地上画素寸法、素子寸法及び画面距離から求めるものとする。 撮影高度は、対地高度に撮影区域内の撮影基準面高又は平均標高を加えたものとする。
- 6 GPS/IMU装置を用いた撮影を行う場合の計画は、次の条件を考慮して作成するものとする。
 - 一 撮影対象区域からGPS基準局までの距離は、作業に必要な精度が確保できる範囲内とする。
 - 二 GPS衛星の数及び配置は、作業に必要な精度が得られるよう計画するものとする。
 - 三 キネマティックGPS解析のための整数値バイアスの決定は、適切な方法で行うものとする。
- 7 GPS/IMU装置を用いた撮影を行う場合のキネマティックGPS解析における整数値バイアスの決定方法は、GPS基準局と撮影対象区域の基線距離を考慮し、地上初期化方式と空中初期化方式から選択するものとする。
- 8 I MU初期化飛行は、撮影の開始コース、終了コース及び撮影基準面が異なるコースを考慮し行うものとする。
- 9 撮影コース長は、IMUの蓄積誤差を考慮しておおむね 15分以内とする。
- 10 GPS基準局は、撮影対象地域内との基線距離を原則50キロメートル以内とし、やむを得ない場合でも 70キロメートルを超えないものとし、GPS/IMU装置の位置をキネマティックGPS解析で決定するため のGPS観測を行うものとする。
- 11 GPS基準局には、電子基準点を用いることができる。
- 12 新たにGPS基準局を設置する場合は、1級基準点測量及び3級水準測量に準ずる測量によって水平位置及 び標高を求めるものとする。
- 13 GPS基準局の設置位置は、次に留意して決定するものとする。
 - 一 上空視界の確保及びデータ取得の有無
 - 二 受信アンテナの固定の確保
- 14 空中写真の数値化を行う場合の計画は、撮影された空中写真の土地被覆、撮影時期、天候、撮影コースと太陽位置との関係等と使用するデジタルステレオ図化機及び数値編集で用いる図形編集装置並びにモデルごとの数値図化範囲等を考慮するものとする。

(撮影時期)

- 第126条 撮影は、原則として、撮影に適した時期で、気象状態が良好な時に行うものとする。
- 2 GPS/IMU装置を用いた撮影を行う場合は、GPS衛星の配置が良好な時に行うものとする。
- 3 撮影時のGPS衛星の数は、5個以上を標準とする。 (撮影飛行)
- 第127条 撮影飛行は、水平飛行とし、計画撮影高度及び計画撮影コースを保持するものとする。
- 2 GPS/IMU装置を用いた撮影を行う場合は、撮影前後に整数値バイアス決定及びIMUドリフト初期化の ための飛行を行うものとする。
- 3 計画撮影高度に対するずれは、計画撮影高度の5パーセント以内とする。ただし、フィルム航空カメラによる 撮影で、撮影縮尺が4000分の1以上のとき、又は地図情報レベル500以上のためのデジタル航空カメラに よる撮影のときは、計画対地高度の10パーセント以内とすることができる。
- 4 航空カメラの傾きは、鉛直方向とし、大幅な傾きが起きないように撮影するものとする。
- 5 GPS/IMU装置を用いて撮影を行う場合の等速直線飛行は、進入を含めて概ね15分以内とし、これを超える場合は適宜IMU初期化飛行を実施するものとする。
- 6 地上で初期化を行う場合は、航空機をGPS受信波のマルチパスとなる反射源から離して駐機するものとする。 (露出時間)
- 第128条 航空カメラの露出時間は、飛行速度、使用フィルム(撮像素子)、フィルター、計画撮影高度等を考慮して、適切に定めなければならない。

(航空カメラの使用)

- 第129条 同一区域内の撮影は、原則として、同一航空カメラで行うものとする。
- 2 やむを得ず他の航空カメラを使用する場合は、同一コースは同一航空カメラを使用するものとする。
- 3 空中写真に写し込む記録板には、撮影地区名、計画撮影高度及び撮影年月日を明瞭に記載しなければならない。 (空中写真の重複度)
- 第130条 空中写真の重複度は、撮影計画に基づいた適切な重複度となるように努めなければならない。
- 2 隣接空中写真間の重複度は、最小で53パーセントとする。
- 3 コース間の空中写真の最小重複度は、10パーセントとする。
- 4 同一コースをやむを得ず2分割及び3分割する場合は、分割部分を2モデル以上重複させなければならない。 (GPS/IMUデータの取得)
- 第131条 GPS/IMU装置を用いた撮影を行う場合のGPS/IMUデータの取得では、GPS基準局のGPS観測データ、航空機搭載のGPS観測データ及びIMU観測データを取得するものとする。
- 2 GPS基準局のGPS観測データ取得間隔は、30秒以下とする。
- 3 航空機搭載GPSのGPS観測データ取得間隔は、1秒以下とする。
- 4 航空機搭載GPS/IMUは、撮影の前後に連続して5分以上の観測を実施するものとする。 (GPS/IMUの解析計算)
- 第132条 撮影が終了したときは、速やかにGPS/IMUデータの解析計算を行うものとする。
- 2 解析計算は、GPS基準局及び航空機搭載のGPSのGPS観測データを用いて、キネマティックGPS解析 を行うものとする。
- 3 解析計算は、キネマティックGPS解析及びIMU観測データによる最適軌跡解析を行うものとする。
- 4 最適軌跡解析結果より外部標定要素を算出するものとする。 (GPS/IMU解析結果の点検)
- 第133条 GPS/IMUの解析計算が終了したときには、速やかに点検を行い、精度管理表等を作成し、再撮

影が必要か否かを判定するものとする。

- 2 点検は、次の各号について行うものとする。
 - 一 GPS基準局及び航空機搭載のGPSの作動及びデータ収録状況の良否
 - 二 サイクルスリップ状況の有無
 - 三 GPS/IMU撮影範囲の確保
 - 四 計測高度及び計測コースの良否
- 3 キネマティックGPS解析時においての点検は、次の各号について行うものとする。
 - 一 撮影コース上における最少衛星数
 - 二 撮影コース上における DOP (PDOP、HDOP、VDOP) 値
 - 三 撮影コース上における位置の往復解の差
 - 四 撮影コース上における解の品質
 - 五 撮影コース上における位置の標準偏差の平均値と最大値
- 4 撮影コース上における最適軌跡解析時においての点検は、次の各号について行うものとする。
 - 一 GPS解とIMU解の整合性
 - 二 撮影コース上における位置の標準偏差の平均値と最大値
 - 三 撮影コース上における姿勢の標準偏差の平均値と最大値
- 5 点検資料として、次の各号について作成するものとする。
 - 一 撮影記録簿
 - 二 撮影作業日誌
 - 三 GPS/IMU計算精度管理表
- 6 電子基準点以外のGPS基準局を使用した場合には、点検資料として次の各号について作成するものとする。
 - 一 GPS基準局観測記録簿
 - 二 GPS観測データファイル説明書

(フィルムの使用)

- 第134条 フィルムの使用に際しては、きず又は静電気等による著しい汚損を生じないようにし、ロールフィルムの両端1メートル部分は、撮影に使用しないものとする。
- 2 ロールフィルムの途中におけるつなぎ合わせは、原則として行わないものとする。 (フィルムの写真処理)
- 第135条 フィルムは、撮影終了後、直ちに適切な方法により現像するものとする。
- 2 写真処理は、各種のむらを生じないように努め、折れ、きず、へこみ、膜面はがれ等で画像を損なわないよう に行うものとする。
- 3 密着印画に用いる印画紙は、半光沢及び中厚手のもので、画面周辺の枠線、指標、計器等が印画される大きさのものとする。
- 4 密着印画の作成は、フィルムの写真処理に準じて行うものとする。 (原数値写真の統合処理)
- 第136条 デジタル航空カメラによる撮影が終了した時は、速やかに原数値写真の統合処理を行うものとする。
- 2 数値写真は、歪曲収差のないものとする。
- 3 統合処理した数値写真よりサムネイル写真を作成するものとする。
- 4 原数値写真の統合における対応点の同定精度は、0.2画素以内とする。
- 5 統合後に原数値写真からの劣化が生じていないこと。

- 6 数値写真の色階調は、各色8ビット以上とする。
- 7 画像ファイル形式は非圧縮形式とする。

(数値写真の整理)

- 第137条 数値写真は、撮影された順番に従って整理し、サムネイル写真及び撮影諸元ファイルを作成するものとする。
- 2 整理は、区域外1モデル以上の写真を含めて行うものとする。ただし、海部等の場合は、この限りでない。 (数値写真の点検)
- 第138条 写真処理及び数値写真の統合処理が終了したときは速やかに点検を行い、精度管理表等を作成し、再 撮影が必要か否かを判定するものとする。
- 2 点検は、次の各号について行うものとする。
 - 一 撮影高度の適否
 - 二 撮影コースの適否
 - 三 実体空白部の有無
 - 四指標及び計器の明瞭度
 - 五 写真の傾き及び回転量の適否
 - 六 写真処理の良否
 - 七 数値写真の統合処理の良否
 - 八 数値写真の画質
- 3 点検資料として、次の各号について作成するものとする。
 - 一 撮影コース別精度管理表
 - 二 撮影ロール別精度管理表
 - 三 点検用標定図

(再撮影)

- 第139条 点検結果により、再撮影の必要がある場合は、速やかに再撮影を行わなければならない。
- 2 再撮影は、原則として、当該コースの全部について行うものとする。

(ネガフィルムの編集)

- 第140条 ネガフィルムの編集は、両端に1メートルの余白を残し、画像を汚損することのないよう適切に行う ものとする。
- 2 ネガフィルムの編集は、次の各号について行うものとする。
 - 一 編集は、区域外1モデル以上の写真を含めて行うものとする。ただし、海部等の場合は、この限りでない。
 - 二 写真番号は、原則として、東西コースにあっては西から東へ、南北コースにあっては北から南へ各コース とも1番から一連の番号を付すものとし、コースが分割された場合も同様とする。
 - 三 コース番号は、原則として、東西コースにあっては北から南へ、南北コースにあっては東から西へ1番から 一連の番号を付すものとし、コースが分割されている場合は、A、B、C等をコース番号の次に付し、接続部 では2モデル以上を重複させるものとする。
 - 四 道路、河川等の路線撮影の場合は、起点方向からコース番号を付すものとする。
 - 五 各コースの両端の写真には、コース番号及び写真番号のほか必要事項を記入するものとする。 (標定図の作成)
- 第141条 標定図は、原則として、数値地形図データファイル形式で作成するものとする。
- 2 標定図を作成する際は、原則として、地図情報レベル25000又は5000を背景として用いるものとす

る。

(ネガフィルムの収納)

第142条 編集を終了したネガフィルムは、空中写真フィルム記録をはり付けた缶にロールごと収納するものとする。

第4款 空中写真の数値化

(空中写真の数値化)

- 第143条 フィルム航空カメラにより撮影された空中写真の数値化は、適切な画像が得られるように努め、写真画像の損傷、汚れ、幾何学的歪み、輝度むら等を生じないように行うものとする。
- 2 数値化は、原則としてロールフィルムから直接行うものとする。
- 3 数値化は、次の各号について行うものとする。
 - 一 数値化の前にロールフィルムに付着したゴミ、汚れ、ほこり等を除去するとともにきずやへこみ等の点検 を行うものとする。
 - 二 ロールフィルムを装着する直前には、空中写真用スキャナの写真架台のゴミ、汚れ、ほこり等を除去する ものとする。
 - 三 フィルム圧定装置によって数値化する時に、フィルム歪みが発生しないように確実に圧定を行うものとする。
 - 四 同一ロールフィルムは、原則として同一スキャナを使用して数値化を行うものとする。
 - 五 空中写真の中央並びに四隅において、明瞭な画像が得られるようにピントを合わせるものとする。
 - 六センサのずれ等が生じないようにするものとする。
 - 七 色調補正を行うためのプレスキャンは、原則として撮影コースごとに始点と終点で行うものとし、更に、 撮影コース内で顕著に色調が変わる地域がある場合は、これらを分けて行うものとする。
 - 八 数値化された空中写真は、土地被覆、撮影時期、天候、撮影コースと太陽位置との関係等を考慮して抜き 取り、全体の色調が統一されているかを点検するものとする。
 - 九数値化は、原則として、次のとおり行うものとする。
 - イ 東西コースで撮影した場合は、北方向を上にして数値化をすること。
 - ロ 南北コースで撮影した場合は、東方向を上にして数値化をすること。
 - ハ 90度以下の斜めコースで撮影した場合は、北西方向を上にして数値化をすること。
 - ニ マイナス90度以上の斜めコースで撮影した場合は、北東方向を上にして数値化をすること。
 - 十 数値化の画素寸法及び画像データ形式は、次表を標準とする。

項目	規格(精度)	
数値化の画素寸法	0.021mm 以内	
色階調	各色 8bit 以上	
画像データ形式	非圧縮形式	

(数値化の範囲)

- 第144条 数値化の範囲は、指標、カウンタ番号及びカメラ情報が入る範囲とする。
- 2 「カメラ情報」とは、レンズ番号及び焦点距離をいう。

(指標座標の測定)

第145条 数値写真の指標座標の測定は、デジタルステレオ図化機を使用し、各数値写真に含まれる指標を1回 測定するものとする。

(内部標定)

- 第146条 内部標定は、4つ以上の指標を使用して決定するものとする。
- 2 指標座標の計算には、アフィン変換又はヘルマート変換を用いるものとし、残存誤差は、最大値が 0.03 ミリメートル以内を標準とする。
- 3 指標の座標値及び歪曲収差は、使用した航空カメラの検定値を用いるものとする。 (空中写真の数値化の点検)
- 第147条 空中写真の数値化が終了したときは、速やかに点検を行い、精度管理表等を作成し、再数値化が必要 か否かを判定するものとする。
- 2 点検は、次の項目について行うものとする。
 - 一 数値化範囲の良否
 - 二 指標の明否
 - 三 カウンタ番号の明否
 - 四 カメラ情報の明否
 - 五 数値化による汚れ及び歪み
 - 六 色調の良否
 - 七 内部標定による指標の残存誤差
- 3 点検資料として次の各号について作成するものとする。
 - 一 撮影コース別精度管理表
 - 二 撮影ロール別精度管理表
 - 三空中写真数値化作業記録簿及び点検記録簿

(再数値化)

- 第148条 次の各号に該当する場合は、速やかに再数値化を行わなければならない。
 - 一 指標、カメラ情報及びカウンタ番号が含まれて数値化されていない場合
 - 二 指標の残存誤差の最大値が0.03ミリメートルを超えている場合
 - 三 数値化に起因する汚れ及び歪みが含まれている場合
- 2 再数値化は、原則として当該空中写真についてのみ行うものとする。

(数値写真の収納)

- 第149条 数値写真の収納は、ファイルの欠損や重複等がないように留意するものとする。
- 2 フォルダとの関連やファイル名の付与等についての点検を行うものとする。

第5款 同時調整

(要旨)

第150条 「同時調整」とは、デジタルステレオ図化機によりパスポイント及びタイポイント並びに基準点等の 写真座標を自動及び手動測定し、GPS/IMU装置により得られた外部標定要素との調整計算を行った上、各 写真の外部標定要素及びパスポイント、タイポイント等の水平位置及び標高を定める作業をいう。

(方法)

第151条 同時調整は、第8節の規定を準用して実施するものとする。

第6款 品質評価

(品質評価)

第152条 撮影の品質評価は、第44条の規定を準用する。

第7款 成果等

(成果等)

- 第153条 成果等は、作業方法に応じて、次の各号から得られたものとする。
 - 一 ネガフィルム
 - 二数值写真
 - 三 サムネイル画像
 - 四 標定図
 - 五 同時調整成果表 (外部標定要素成果表)
 - 六 撮影記録
 - 七品質評価表
 - 八 その他の資料

第6節 刺針

(要旨)

第154条 「刺針」とは、空中三角測量及び数値図化において基準点等の写真座標を測定するため、基準点等の 位置を現地において空中写真上に表示する作業をいう。

(刺針の実施)

- 第155条 刺針は、設置した対空標識が空中写真上において明瞭に確認することができない場合に行うものとする。
- 2 刺針は、空中写真の撮影後、現地の状況が変化しない時期に行うものとする。ただし、計画機関が指示し、又は承認した場合は、現地調査時期に行うことができる。

(方法)

- 第156条 刺針は、原則として、現地において基準点等の位置を空中写真上の明瞭な地点に偏心を行って表示することにより行うものとする。
- 2 刺針の許容誤差は、地上座標換算で、第111条に規定する標定点の精度の当該地図情報レベルと同等とする。
- 3 刺針は、現地において周囲の状況を確認し、必要であれば空中写真の実体視を行い、周囲の明瞭な地物との関係を確かめ、誤りの無いことを確認するものとする。また、刺針後にも誤りの有無を点検するものとする。 (偏心要素の測定及び計算)
- 第157条 偏心要素の測定及び計算については、第117条の規定を準用する。

(成果等)

- 第158条 成果等は、次の各号のとおりとする。
 - 一 刺針点明細票
 - 二偏心計算簿
 - 三 刺針点一覧図
 - 四 精度管理表
 - 五 その他の資料

第7節 現地調査

(要旨)

- 第159条 「現地調査」とは、数値地形図データを作成するために必要な各種表現事項、名称等について地図情報レベルを考慮して現地において調査確認し、その結果を空中写真及び参考資料に記入して、数値図化及び数値編集に必要な資料を作成する作業をいう。
- 2 現地調査に使用する空中写真の縮尺は、原則として、地図情報レベルに対応する数値地形図データ出力図の相当縮尺とする。

(予察)

- 第160条 予察は、現地調査の着手前に、空中写真、参考資料等を用い、調査事項、調査範囲、作業量等を把握するために行うものとする。
- 2 予察は、次の事項について行い、その結果を空中写真、参考図、野帳等に記入し、現地調査における基礎資料とする。
 - 一 収集した資料の良否
 - 二 空中写真の判読困難な事項及びその範囲
 - 三 判読不能な部分
 - 四 撮影後の変化が予想される部分
 - 五 各資料間で矛盾が生じている部分
- 3 予察の実施時期は、工程管理及び作業効率を勘案して数値図化工程と合わせて行うことができる。 (現地調査の実施)
- 第161条 現地調査は、予察の結果に基づいて空中写真及び各種資料を活用し、次に掲げるものについて実施するものとする。
 - 一 予察結果の確認
 - 二 空中写真上で判読困難又は判読不能な事項
 - 三 空中写真撮影後の変化状況
 - 四 図式の適用上必要な事項
 - 五注記に必要な事項及び境界
 - 六 その他特に必要とする事項
- 2 前項の内容を調査する場合、次の事項について留意するものとする。
 - 一 基準点等の確認は、必要に応じて行うものとする。
 - 二 外周の不明瞭なもの及び建物記号描示のために区分する必要のある同一建物は、その区画を描示するものとする。
 - 三 植生及び植生界は、空中写真で明瞭に判読できないものを調査するものとする。
 - 四 判読困難な凹地、がけ、岩等表現上誤り易い地形については、数値図化の参考となるように詳細に調査するものとする。

(整理)

- 第162条 調査結果は、数値図化及び数値編集作業を考慮して、空中写真等に記入し、整理するものとする。
- 2 調査結果の整理は、次のとおりとする。
 - 一 調査事項は、地図情報レベルに対応する相当縮尺の空中写真等に付録7に定める記号により脱落及び誤記 のないように整理するものとする。
 - 二 地名及び境界を整理する空中写真等は、調査事項を整理した空中写真等とは異なるものを使用することができる。
 - 三 空中写真は、各コース1枚おきに整理するものとする。

(接合)

- 第163条 調査事項の接合は、現地調査期間中に行い、整理の際にそれぞれ点検を行うものとする。 (成果等)
- 第164条 成果等は、次の各号のとおりとする。
 - 一 現地調査結果を整理した空中写真

二 その他の資料

第8節 空中三角測量

(要旨)

第165条 「空中三角測量」とは、デジタルステレオ図化機又は解析図化機(以下「デジタル図化機等」という。) を用いて、パスポイント、タイポイント、基準点等の写真座標を測定し、基準点成果及び撮影時に得られた外部標定要素を統合して調整計算を行い、各写真の外部標定要素の成果値、パスポイント、タイポイント等の水平位置及び標高を決定する作業をいう。

(方法)

- 第166条 空中三角測量は、解析法によって行い、調整計算の方法は各写真を連結させる形状によりコース又は ブロックを単位としてバンドル法により行うものとする。
- 2 空中三角測量の計画図は、数値図化区域、撮影コース及び基準点等の配置を考慮して作成するものとする。
- 3 調整計算は、電子計算機を用いて行うものとし、使用するプログラムはテストデータによる検証が行われたも のとする。
- 4 調整計算には、撮影時に取得したGPS/IMUの解析計算で得られた外部標定要素の観測データ、パスポイント、タイポイント、基準点等を使用する。
- 5 GPS/IMU装置で得られた外部標定要素の観測データのうち、計算に利用できるものは、第133条の規 定による点検を完了したものとする。
- 6 撮影時に記録されたGPS/IMU装置で得られた外部標定要素の観測データで当該業務に必要な精度が得られない場合又は外部標定要素を得ていない場合の調整計算は、第168条第3項の規定を準用する。 (パスポイント及びタイポイントの選定)
- 第167条 パスポイント及びタイポイントは、連結する各写真上の座標が正確に測定できる地点に配置するものとし、その位置はデジタルステレオ図化機の機能を用いて記録するものとする。
- 2 パスポイント及びタイポイントは、次のように配置することを標準とする。
 - 一 パスポイントの配置
 - イ パスポイントは、主点付近及び主点基線に直角な両方向の3箇所以上を標準とする。
 - ロ 主点基線に直角な方向は、上下端付近の等距離に配置することを標準とする。
 - 二 タイポイントの配置
 - イ タイポイントの数は、1モデルに1点を標準とし、ほぼ等間隔に配置する。
 - ロ タイポイントは、隣接コースと重複している部分で、空中写真上で明瞭に認められる位置に、直線上に ならないようジグザグに配置する。
 - ハタイポイントは、パスポイントで兼ねることができる。
- 3 パスポイント及びタイポイントの計測の可否は、調整計算の結果により判定し、点数、配置及び交会残差が適切でない場合には、目視にて再観測を行うものとする。
- 4 解析図化機において、密着ポジフィルムを使用する場合は、位置の記録をフィルム上での点刻に代えることができる。

(基準点の選定)

- 第168条 基準点は、コース及びブロック共に配置形状を考慮し、写真上で明瞭な地点を選定するものとする。
- 2 基準点の点数及び位置は、バンドル法又はGPS/IMU装置による外部標定要素を併用する方法に合わせて、 作業の精度が確保できるように配置するものとする。
- 3 調整計算の方法は、次のとおりと行うものとする。

- 一 外部標定要素の観測データと基準点を使用して調整計算を行う場合
 - イ 単コースの場合 水平位置及び標高の基準点は、各コースの両端のモデルに上下各1点を標準とする。ただし、やむを得ない場合は、2点のうち1点は当該モデルの近接モデルに設置することができる。
 - ロ ブロックの場合 水平位置及び標高の基準点は、ブロックの四隅付近と中央部付近に計5点配置することを標準とする。ただし、地形等によりタイポイントが1点以下のモデル(当該コース上に基準点がある場合を除く)が3モデル以上近接する箇所については、精度を考慮して当該モデル又は近接モデルに基準点を1点配置することを標準とする。
 - ハ ブロックの撮影が複数日にまたがる場合は、各撮影日のコース内に上記の基準点数のうち少なくとも 1点の基準点を配置し、不足する場合は基準点を追加するものとする。
 - 二 対象地域の特性により撮影後の基準点設置が困難であることが事前に判明している場合には、事前に基準点配置計画を検討し対空標識を設置するなどの対策をとるものとする。
- 二 基準点のみを使用して調整計算を行う場合に使用する基準点数及び配置は、次のとおりとする。

イ 「単コース調整」

- (1) 基準点の配置は、コースの両端のモデルに上下各1点及び両端のモデル以外では、コース内に均等に配置することを標準とする。
- (2) 水平位置 (N_H) 及び標高 (N_V) の基準点数は、次の式を標準とする。

 $N_{H} = N_{V} = (n/2) + 2$

ただし、nはモデル数とし、〔〕の中の計算終了時の小数部は切り上げるものとする。

- ロ「ブロック調整」
 - (1) 水平位置の基準点の配置は、ブロックの四隅に必ず配置するとともに、両端のコースについては 6モデルに1点、その他のコースについては3コースごとの両端のモデルに1点、ブロック内の精 度を考慮して30モデルに1点を均等の割合で配置することを標準とする。

基準点数(N_H)は、次の式を標準とする。

 $N_H = 4+2 \left(\frac{(n-6)}{6} \right) + 2 \left(\frac{(c-3)}{3} \right) + \left(\frac{(n-6)}{(c-3)} \right)$

ただし、nは1コース当たりの平均モデル数、cはコース数、[]の中の計算終了時の小数部は切り上げ、負になる場合は0とする。

(2) 標高の基準点の配置は、2コースごとの両端モデルに1点ずつ配置するほか、12モデルに1点の割合で各コースに均一に配置することを標準とする。

基準点数は次の式を標準とする。

 $N_V = (n/12) c + 2 (c/2)$

ただし、nは1 コース当たりの平均モデル数、cはコース数、 [] の中の計算終了時の小数部は切り上げ、計算された N_v が①で計算された N_H より小さい場合は、 N_v は N_H と同数とする。

三 基準点の計測の可否は、調整計算の結果により判定し、基準点残差及び交会残差が適切でない場合には、目 視にて再観測を行うこと。

(写真座標の測定)

- 第169条 写真座標の測定は、デジタル図化機により各写真に含まれる指標、基準点等、パスポイント及びタイポイントを自動又は手動で測定するものとする。
- 2 指標、パスポイント及びタイポイントは、画像相関により自動測定できる。ただし、目視確認後、修正の必要な点に対しては手動で再観測を行うものとする。
- 3 デジタル航空カメラによる数値写真の場合は、数値写真の四隅を指標に代えるものとする。

(内部標定)

- 第170条 内部標定は、フィルムにおいては4つ以上の指標を基に行い、デジタル航空カメラにおいては数値写真を基に行うことを標準とする。
- 2 指標の残存誤差は、フィルム上に換算して最大値が0.03ミリメートル以内とする。
- 3 指標座標の計算には、アフィン変換又はヘルマート変換を用いるものとする。
- 4 指標の座標値、歪曲収差等は、使用した航空カメラの検定値を用いるものとする。
- 5 指標観測は、自動測定を用いることができる。 (調整計算)
- 第171条 各写真の外部標定要素の成果値は、コース又はブロックを単位とした調整計算によって決定するものとする。
- 2 原則として、バンドル法による調整計算の前に、多項式法等による調整計算を行い、基準点の異常、計測の誤り等に起因する全ての大誤差のチェックを行うものとする。
- 3 調整計算式は、原則として、写真の傾きと投影中心の位置を未知数とした射影変換式とし、これに種々の定誤 差に対応したセルフキャリブレーション項を付加することができる。ただし、セルフキャリブレーション項は、 数値図化時のステレオモデルの構築時に再現できるものに限定するものとする。
- 4 大気屈折及び地球曲率の影響の補正は、セルフキャリブレーションで代えることができる。
- 5 パスポイント及びタイポイントが作業に必要な精度を満たすまで、不良点の再観測及び追加観測を手動で行い 再度調整計算を行うものとする。
- 6 基準点のどれか1点を用いて調整計算を行った後、その他の点を検証点として精度点検を行うものとする。ただし、GPS/IMUにおける検証点の許容標準偏差は、次表を標準とする。

地図情報レベル	水平位置、標高
500	0.54m 以内
1000	0.66m 以内
2500	0.90m 以内
5000	1.50m 以内
10000	2.10m 以内

- 7 検証点の標準偏差が前項に規定する水平位置及び標高の許容範囲内であった場合は、すべての基準点を用いて 調整計算を行うものとする。
- 8 すべての調整計算においてGPS/IMU装置で得られた外部標定要素の観測データが使用できない場合は、 本条第6項及び第7項の規定は適用しないものとする。
- 9 基準点で計算に使用しない点がある場合は、その点名及び理由を計算簿に明記するものとする。
- 10 同一ブロック内における基準点残差は、フィルム航空カメラ撮影の場合、水平位置及び標高とも標準偏差が対地高度の0.02パーセント以内、最大値が0.04パーセント以内とし、デジタル航空カメラ撮影の場合、水平位置及び標高の最大値が標準の地上画素寸法を基線高度比で割った値を超えないものとする。
- 11 同一ブロック内における各空中写真上でのパスポイント及びタイポイントの交会残差は、フィルム航空カメラ撮影の場合、標準偏差が0.015ミリメートル以内及び最大値が0.030ミリメートル以内とし、デジタル航空カメラ撮影の場合、標準偏差が0.75画素以内及び最大値が1.5画素以内とする。
- 12 隣接ブロック間のタイポイント較差は、フィルム航空カメラ撮影の場合、水平位置及び標高とも対地高度の 0.06パーセント以内とし、デジタル航空カメラ撮影の場合、標準の地上画素寸法を基線高度比で割った値に

- 1. 5倍した値以内とする。
- 13 原則として、調整計算ソフトの異常値検索機能等を用いて、基準点の異常、測定の誤り等に起因する誤差の 点検を行うものとする。

(調整計算の点検)

- 第172条 調整計算簿を用いて点検を行い、精度管理表を作成し、成果の可否を判定する。
- 2 地上座標系との水平位置及び標高の誤差は、次表を標準とする。

地図情報レベル	水平位置の許容誤差	標高の許容誤差
500	0.15m以内	0.2m以内
1000	0.3m以内	0.3m以内
2500	0.75m以内	0.5m以内
5000	1.5m以内	1.0m以内
10000	3.0m以内	1.5m以内

(整理)

- 第173条 調整計算の終了後、外部標定要素、パスポイント及びタイポイントの成果表を作成し、次のとおり整理するものとする。
 - 一 調整計算の成果表の単位は、平面位置及び高さの座標単位は、0.01メートルとし、回転要素の角度単位は、0.0001度とする。
 - ニ 調整計算実施一覧図は、計画図に準じて写真主点の位置、基準点及びタイポイントを表示し作成するものと する。

(成果等)

- 第174条 成果等は、次の各号のとおりとする。
 - 一 外部標定要素成果表
 - 二 パスポイント、タイポイント成果表
 - 三 空中三角測量作業計画、実施一覧図
 - 四 写真座標測定簿
 - 五 調整計算簿
 - 六 精度管理表
 - 七 その他の資料

第9節 数値図化

(要旨)

第175条 「数値図化」とは、空中写真、空中三角測量等で得られた成果を使用し、デジタルステレオ図化機、解析図化機又は座標読取装置付アナログ図化機(以下「数値図化機」という。)を用いて、ステレオモデルを構築し、地形、地物等の座標値を取得し、数値図化データを記録する作業をいう。

(数値図化機)

- 第176条 数値図化に使用する数値図化機は、使用する空中写真の形式により数値画像又は密着ポジフィルムに 対応するとともに機種ごとに次の性能を有するものとする。
 - 一 数値画像を計測するデジタルステレオ図化機の構成及び機能は、次のものを標準とする。
 - イ デジタルステレオ図化機は、電子計算機、ステレオ視装置、スクリーンモニター及び三次元マウス又は XYハンドル、Z盤等で構成されるものとする。
 - ロ 内部標定、相互標定、対地標定の機能又は外部標定要素によりステレオモデルの構築及び表示が行える

ものとする。

- ハX、Y、Zの座標値と所定のコードが入力及び記録できる機能を有するものとする。
- ニ デジタルステレオ図化機の画像計測の性能は、0.1画素以内まで読めるものとする。
- 二 密着ポジフィルムを計測する解析図化機又は座標読取装置付アナログ図化機の構成及び機能は、次のもの を標準とする。
 - イ 解析図化機は、電子計算機、光学系と連動した写真座標計測装置、スクリーンモニター及び三次元マウス又はXYハンドル、Z 盤等で構成されるものとする。
 - ロ 座標読取装置付アナログ図化機は、光学系と連動した幾何学又は解析学的に構築されるステレオモデル 機構、座標読取装置XYハンドル、Z盤等で構成されるものとする。
 - ハ 内部標定、相互標定及び対地標定が行えるものとする。
 - ニ X、Y、Zの座標値と所定のコードが入力及び記録できる機能を有するものとする。
 - ホ 解析図化機の写真座標の計測精度は、機械座標における標準偏差で0.005ミリメートル以内及び分解 能は0.001ミリメートル以内のものとする。
 - へ 座標読取装置の読取精度は、密着ポジフィルム上に換算した値で標準偏差は0.01ミリメートル以内 とし、座標読取装置の分解能は、密着ポジフィルム上に換算した値で0.005ミリメートル以内のもの とする。
- 2 使用する数値図化機は、所要の精度を確認するため、作業着手前に点検調整を行うものとする。
- 3 解析図化機は、各図化機が保有する自己点検機能等により点検するものとする。また、座標読取装置付アナログ図化機は、当該図化機に付属する格子板計測による点検として、格子は明瞭で計測に支障のないものとする。 (取得する座標値の単位)
- 第177条 数値図化における地上座標系は、0.01メートル単位とする。 (標定)
- 第178条 「標定」とは、数値図化機において空中写真のステレオモデルを構築し、地上座標系と結合させる作業をいう。
- 2 標定は、基準点、空中三角測量成果である外部標定要素又はパスポイント、タイポイント等の成果を用いることを標準 とする。
- 3 パスポイント、タイポイント等を用いて標定する場合は、次の方法を標準とする。
 - 一 相互標定は、6点のパスポイントの付近で行うものとする。
 - 二 対地標定は、すべてのパスポイント、基準点等を使用して行うものとする。
 - 三パスポイント、タイポイント等を用いる標定には、密着ポジフィルムを使用するものとする。
 - 四 標定の結果等は、標定要素と共に記録するものとする。
- 4 標定時のステレオモデルの残存縦視差は、数値画像使用時では画素寸法の単位で1画素以内、密着ポジフィルム使用時では密着ポジフィルム上で0.02ミリメートル以内とし、地上座標系との水平位置及び標高の誤差は、次表を標準とする。

地図情報レベル	水平位置の許容誤差	標高の許容誤差	
500	0.15m以内	0.2m以内	
1000	0.3m以内	0.3m以内	
2500	0.75m以内	0.5m以内	
5000	1.5m以内	1.0m以内	
10000 3.0m以内		1.5m以内	

(細部数値図化)

- 第179条 細部数値図化は、線状対象物、建物、植生、等高線の順序で行うものとし、必ずデータの位置、形状等をスクリーンモニター又は描画テーブルに出力し、データの取得漏れのないように留意しなければならない。
- 2 分類コードは、付録7の数値地形図データ取得分類基準を標準とする。
- 3 変形地は、可能な限り等高線で取得し、その状況によって変形地記号を取得するものとする。
- 4 等高線は、主曲線を1本ずつ測定して取得し、主曲線だけでは地形を適切に表現できない部分について補助曲線等を取得するものとする。
- 5 陰影、ハレーション等の障害により判読困難な部分又は図化不能部分がある場合は、その部分の範囲を表示し、 現地補測(第195条第2項に規定する現地補測をいう。)を行う場合の必要な注意事項を記載するものとする。
- 6 数値図化時においては、データの位置、形状等をスクリーンモニターに表示して確認することを標準とする。 (数値図化の範囲)
- 第180条 モデルの数値図化範囲は、原則として、パスポイントで囲まれた区域内とする。 (地形データの取得)
- 第181条 地形表現のためのデータ取得は、等高線法、数値地形モデル法又はこれらの併用法で行うものとする。
- 2 等高線法によりデータを取得する場合は、地上座標系における距離間隔、曲率変化又は時間間隔のいずれかを 取得頻度の指標として選択し、地形の状況に応じて適切に取得頻度を設定するものとする。
- 3 数値地形モデル法によりデータを取得する場合は、所定の格子点の標高値を数値図化機により直接測定し記録するものとする。ただし、必要に応じて等高線から計算処理で発生させることができるものとし、自動標高抽出技術を用いた数値地形モデル法及びその標高値による等高線データの取得を行ってはならない。
 - 一 所定の格子点間隔は、仕様に従い選択するものとする。
 - 二 任意の点は、必要に応じて第182条の規定を準用して選択するものとする。
- 4 数値地形モデルのデータをそのまま採用し、成果とする場合は、点検プログラム又は出力図等により、データ の点検を行うものとする。

(標高点の選定)

- 第182条 標高点は、地形判読の便を考慮して次のとおり選定するものとする。
 - 一 主要な山頂
 - 二 道路の主要な分岐点及び道路が通ずるあん部又はその他主要なあん部
 - 三 谷口、河川の合流点、広い谷底部又は河川敷
 - 四 主な傾斜の変換点
 - 五 その付近の一般面を代表する地点
 - 六 凹地の読定可能な最深部
 - 七 その他地形を明確にするために必要な地点
- 2 標高点は、なるべく等密度に分布するように配置するものとし、その密度は、地図情報レベルに4センチメートルを乗じた値を辺長とする格子に1点を標準とする。

(標高点の測定)

第183条 標高点の測定は2回行うものとし、測定値の較差の許容範囲は、次表を標準とする。

地図情報レベル	較 差
500	0.1m以内
1000	0.2m以内
2500	0.4m以内

5000	0.6m以内
10000	0.8m以内

- 2 較差が許容範囲を超える場合は、更に1回の測定を行い、3回の測定値の平均値を採用するものとする。
- 3 標高点は、デジタルステレオ図化機による自動標高抽出技術を用いて取得してはならない。 (他の測量方法によるデータの追加)
- 第184条 数値図化データに、他の測量方法によるデータを追加する場合は第187条の規定を準用する。 (数値図化データの点検)
- 第185条 数値図化データの点検は、第178条から前条までの工程で作成された数値図化データをスクリーン モニターに表示させて、空中写真、現地調査資料等を用いて行うものとする。
- 2 数値図化データの点検は、必要に応じて地図情報レベルの相当縮尺の出力図を用い、次の項目について行うものとする。
 - 一 取得の漏れ及び過剰並びに平面位置及び標高の誤りの有無
 - 二 接合の良否
 - 三 標高点の位置、密度及び測定値の良否
 - 四 地形表現データの整合

(地形補備測量)

- 第186条 「地形補備測量」とは、地図情報レベル1000以下の数値地形図データを作成する場合に、計画機関が特に指定する区域を対象として等高線及び標高点を現地で補備する作業をいう。
- 2 地形補備測量は、原則として、次のいずれかの場合に行うものとする。
 - 一 標高点及び等高線の精度を、高木の密生地についても確実に維持する必要がある場合
 - 二 主曲線の間隔を 0.5メートルとする場合
 - イ 簡易水準測量に基づいた標高点(以下「単点」という。)を測定し、各単点及び観測成果は、単点の位置が特定できる空中写真上に表示するものとする。
 - ロ 単点の密度は、地図情報レベルの相当縮尺で出力図とした時、地図情報レベルに4センチメートルを乗 じた値を辺長とする格子に1点を標準とする。
 - ハ 単点は2回測定し、その較差は10センチメートル以内とする。

(地形補備測量の方法)

- 第187条 地形補備測量の方法は、基準点等又は空中三角測量等により座標を求めた点に基づいて、第2章第4 節の細部測量及び4級基準点測量の規定により行うものとする。
- 2 地形補備測量データは、地形補備測量により取得した地形データを編集処理し、測定位置確認資料に基づき分類コードを付して作成するものとする。

第10節 数値編集

(要旨)

- 第188条 本節において「数値編集」とは、現地調査等の結果に基づき、図形編集装置を用いて数値図化データ を編集し、編集済データを作成する作業をいう。
- 2 図形編集装置の構成は、第87条の規定を準用する。 (数値図化データ及び現地調査データ等の入力)
- 第189条 数値図化データ及び地形補備測量データは、図形編集装置に入力するものとする。
- 3 現地調査等において収集した図面等の資料は、デジタイザ又はスキャナを用いて数値化し、図形編集装置に入 力するものとする。

(数値編集)

- 第190条 前条において入力されたデータは、図形編集装置を用いて、追加、削除、修正等の処理を行い、編集 済データを作成するものとする。
- 2 等高線データは、スクリーンモニター又は地図情報レベルの相当縮尺の出力図を用いて点検を行い、矛盾箇所 等の修正を行うものとする。

(接合)

- 第191条 接合は、作業単位ごとに行い、同一地物の座標を一致させるものとする。
- 2 地形、地物等のずれが、第79条に定める製品仕様書の規定値以内の場合は、関係図形データを修正して接合するものとする。
- 3 地形、地物等のずれが、第79条に定める製品仕様書に規定値を満たさない場合は、数値図化作業を再度実施 するものとする。
- 4 基盤地図情報に該当する地物を含む場合は、第9章第6節の規定を準用する。 (出力図の作成)
- 第192条 点検、現地補測等のための出力図は、自動製図機を用いて編集済データより作成するものとする。
- 2 自動製図機の性能は、第87条の規定を準用する。
- 3 出力図の縮尺は、原則として、地図情報レベルの相当縮尺とする。
- 4 出力図は、第82条に定める図式に基づいて作成するものとする。 (点検)
- 第193条 出力図の点検は、編集済データ及び前条の規定により作成した出力図を用いて行うものとする。
- 2 編集済データの論理的矛盾等の点検は、点検プログラム等により行うものとする。

第11節 補測編集

(要旨)

第194条 「補測編集」とは、前節で作成された編集済データ及び出力図に表現されている重要な事項の確認を 行い、必要部分を現地において補測する測量(以下「現地補測」という。)を行い、これらの結果に基づき編集 済データを編集することにより、補測編集済データを作成する作業をいう。

(方法)

- 第195条 補測編集において確認及び補備すべき事項は、次のとおりとする。
- 一 編集作業において生じた疑問事項及び重要な表現事項
- 二編集困難な事項
- 三 現地調査以降に生じた変化に関する事項
- 四境界及び注記
- 五 各種表現対象物の表現の誤り及び脱落
- 2 現地補測は、判読又は数値図化が困難な地物等及び写真撮影後に変化が生じた地域について、基準点等又は編 集済データ上で現地との対応が確実な点に基づき、第2章第4節の細部測量により行うものとする。
- 3 現地補測の結果は、測定結果を電磁的記録媒体に記録するほか、注記、記号、属性等を編集済データ出力図に 整理する。

(補測編集)

- 第196条 補測編集済データは、現地補測の結果に基づき、図形編集装置を用いて前節の規定により作成された 編集済データに追加、修正等の編集処理を行い作成するものとする。
- 2 補測編集における編集処理は、第10節の数値編集の規定を準用する。

(出力図の作成)

第197条 出力図の作成は、第192条の規定を準用する。

(出力図の点検)

第198条 出力図の点検は、補測編集済データ及び前条の規定により作成した出力図を用い、第195条第1項 に規定する事項について行うものとする。

第12節 数値地形図データファイルの作成

(要旨)

第199条 本節において「数値地形図データファイルの作成」とは、製品仕様書に従って補測編集済データから 数値地形図データファイルを作成し、電磁的記録媒体に記録する作業をいう。

第13節 品質評価

(品質評価)

第200条 数値地形図データファイルの品質評価は、第44条の規定を準用する。

第14節 成果等の整理

(メタデータの作成)

第201条 数値地形図データファイルのメタデータの作成は、第45条の規定を準用する。

(成果等)

- 第202条 成果等は、次の各号のとおりとする。
 - 一 数値地形図データファイル
 - 二 品質評価表
 - 三 メタデータ
 - 四 その他の資料

第4章 既成図数値化

第1節 要旨

(要旨)

- 第203条 「既成図数値化」とは、既に作成された地形図等(以下「既成図」という。)の数値化を行い、数値 地形図データを作成する作業をいう。
- 2 「ベクタデータ」とは、座標値をもった点列によって表現される図形データをいう。
- 3 「ラスタデータ」とは、行と列に並べられた画素の配列によって構成される画像データをいう。 (成果の形式)
- 第204条 既成図数値化における成果の形式は、ベクタデータを標準とする。

(座標値の単位)

- 第205条 ベクタデータにおける地上座標値は、0.01メートル単位とする。
- 2 ラスタデータにおける1画素は、既成図上で最大0.1ミリメートルとする。

(工程別作業区分及び順序)

- 第206条 工程別作業区分及び順序は、次のとおりとする。
 - 一 作業計画
 - 二 計測用基図作成
 - 三 計測
 - 四 数值編集
 - 五 数値地形図データファイルの作成

- 六 品質評価
- 七 成果等の整理

第2節 作業計画

(要旨)

第207条 作業計画は、第11条の規定によるほか、既成図の縮尺、原図の良否、精度、数値化する項目等を考慮の上、工程別に作成するものとする。

第3節 計測用基図作成

(要旨)

- 第208条 「計測用基図作成」とは、既成図の原図に基づき計測に使用する基図を作成する作業をいう。
- 2 既成図の原図が利用困難な場合は、複製用原図(以下「原図」という。)を作成し計測することができる。
- 3 複製用原図は、図郭線及び対角線の点検を行うものとする。原図の図郭線及び対角線に対する許容範囲は、次のとおりとする。ただし、誤差が許容範囲を超える場合は、補正が可能か適切に対応するものとする。
 - 一 図郭線 0.5ミリメートル以内
 - 二 対角線 0.7ミリメートル以内

(計測用基図作成)

- 第209条 計測用基図は、既成図の原図を写真処理等により複製し、作成するものとする。
- 2 計測用基図の材質は、伸縮の少ないポリエステルフィルム等を使用するものとする。
- 3 計測用基図の作成に当たっては、必要に応じて資料の収集、現地調査等を行い、内容を補完するものとする。
- 4 計測用基図は、原図と比較等を行い、画線の良否、表示内容等を点検し、必要に応じて修正するものとする。 第4節 計測

(要旨)

第210条 「計測」とは、計測機器を用いて、計測用基図の数値化を行い、数値地形図データを取得する作業をいう。

(計測機器)

- 第211条 計測機器は、第87条に掲げるデジタイザ及びスキャナ又はこれと同等以上のものを標準とする。 (デジタイザ計測)
- 第212条 デジタイザによる計測は、計測用基図を用いて、図葉単位に取得するものとする。
- 2 各計測項目の計測開始時及び終了時には、図郭四隅をそれぞれ独立に2回ずつ計測し、較差が0.3ミリメートルを超えた場合は再計測するものとする。ただし、計測用基図の状況に応じて、図郭四隅付近で座標が確認できる点を使用することができる。
- 3 計測機器の機械座標値から平面直角座標値への変換は、アフィン変換を標準とする。
- 4 変換係数は、計測した図郭四隅の機械座標値及び図郭四隅の座標値から最小二乗法により決定するものとする。
- 5 図郭四隅の残存誤差は、地図情報レベルに0.3ミリメートルを乗じた値を最大とする。
- 6 地物等の計測の精度は、0.3ミリメートル以内とする。
- 7 計測に当たっては、分類コード等を付すものとする。
- 8 分類コードは、付録7の数値地形図データ取得分類基準を標準とする。 (スキャナ計測)
- 第213条 スキャナによる計測は、図郭を完全に含む長方形の領域について、適切な方法で、図葉単位ごとに計 測データを作成するものとする。
 - 一 図郭四隅又はその付近で座標が確認できる点の画素座標は、スクリーンモニターに表示して計測するもの

とする。

- 2 計測データは、必要に応じて座標計測及びラスタ、ベクタ変換を行うことができる。
 - 一 計測における読取精度は、読み取る図形の最小画線幅の2分の1を標準とする。
 - 二 計測においては、図葉ごとに縦及び横方向とも規定の画素数になるように補正を行うものとする。
 - 三 再配列を行う場合の内挿方法としては、最近隣内挿法、共1次内挿法、3次たたみ込み内挿法等を用いる。
 - 四 計測データには、必要に応じて図葉名等を入力する。
 - 五 既成図がラスタデータの場合は、前条第5項の規定に基づく精度を満たしているときは、計測データとして 使用することができる。
- 3 計測機器の機械座標値から平面直角座標値系における座標への変換は、前条第3項の規定を準用するものとし、 その他の事項は次の各号のとおりとする。
- 4 変換係数の決定は、前条第4項の規定を準用する。
- 5 図郭四隅の残存誤差は、最大2画素とする。

第5節 数值編集

(要旨)

- 第214条 本節において「数値編集」とは、図形編集装置を用いて計測データを編集し、編集済データを作成する作業をいう。
- 2 図形編集装置の構成等は、第87条の規定を準用する。

(数値編集)

- 第215条 数値編集は、計測データを基に、図形編集装置のスクリーンモニター上で対話処理により、データの 訂正、属性等の付与及びその他必要な処理を行うものとする。
- 2 計測データに取得漏れ、誤り等がある場合は、訂正するものとする。
- 3 隣接する図郭間の地図データの不合は、接合処理により座標を一致させるものとする。
- 4 基盤地図情報に該当する地物を含む場合は、第9章第6節の規定を準用する。 (数値編集の点検)
- 第216条 数値編集の点検は、編集済データを使用し、点検用出力図又はスクリーンモニター上で行うものとする。
- 2 編集済データの論理的矛盾の点検は、点検プログラム等により行うものとする。
- 3 点検用出力図の作成は、次のとおりとする。
 - 一 点検用出力図は、自動製図機等により計測用基図画像と重ね合わせて作成するものとする。
 - 二 点検用出力図の表示内容は、図葉番号、図名、図郭線、図形、属性等とし、これらが明瞭に識別できるも のでなければならない。
 - 三 点検用出力図は、点検に支障がない範囲で適宜合版して作成するものとする。ただし、必要に応じて数値化 した項目ごとに作成することができる。
- 4 点検用出力図又はスクリーンモニターによる点検は、次のとおりとする。
 - 一 点検用出力図による点検
 - イ 点検は、数値化項目の脱落等の有無及び位置の精度について、点検用出力図と計測用基図を対照して行 うものとする。
 - ロ 接合については、隣接する図葉の接合部分を点検用出力図で目視により点検するものとする。
 - 二 スクリーンモニターによる点検
 - イ 点検は、数値化項目の脱落、位置の精度、画線のつながり等について、目視により行うものとする。

- ロ 数値化項目の脱落等については、ラスタデータを背景に点検することができる。
- ハ 接合については、隣接図葉を表示し、良否を点検するものとする。
- 5 点検の結果、計測漏れ、誤り等がある場合は、編集済データの訂正を行うものとする。 第6節 数値地形図データファイルの作成

(要旨)

第217条 本節において「数値地形図データファイルの作成」とは、製品仕様書に従って編集済データから数値 地形図データファイルを作成し、電磁的記録媒体に記録する作業をいう。

第7節 品質評価

(品質評価)

第218条 数値地形図データファイルの品質評価は、第44条の規定を準用する。

第8節 成果等の整理

(メタデータの作成)

第219条 数値地形図データファイルのメタデータの作成は、第45条の規定を準用する。

(成果等)

- 第220条 成果等は、次の各号のとおりとする。
 - 一 数値地形図データファイル
 - 二出力図
 - 三 品質評価表
 - 四 メタデータ
 - 五 その他の資料

第5章 修正測量

第1節 要旨

(要旨)

- 第221条 「修正測量」とは、既成の数値地形図データファイル(以下数値地形図データを「旧数値地形図データ」という。)を更新する作業をいう。
- 2 修正測量における数値地形図データ修正の精度は、次表を標準とする。

地図情報レベル	水平位置の	標高点の	等高線の
	標準偏差	標準偏差	標準偏差
500	0.35m以内	0.33m以内	0.5m以内
1000	1.00m以内	0.5m以内	0.5m以内
2500	2.50m以内	1.0m以内	1.0m以内
5000	5.00m以内	2.5m以内	2.5m以内
10000	10.00m以内	5.0m以内	5.0m以内

(方法)

- 第222条 修正測量は、次に掲げる方法により行うものとする。
 - 一 空中写真測量による修正
 - 二 TS等による修正
 - 三 RTK-GPS法を用いる修正
 - 四 ネットワーク型RTK-GPS法を用いる修正
 - 五 TS等及びRTK-GPS法を併用する修正又はTS等とネットワーク型RTK-GPS法を併用する修

正

- 六 既成図を用いる方法による修正
- 七 他の既成データを用いる方法による修正
- 2 前項の各方法は、それぞれを適切に組み合わせて修正を行うことができるものとする。
- 3 修正データの取得は、必要に応じて修正箇所の周辺部分についても行い、周辺地物等との整合性を確認するものとする。

(工程別作業区分及び順序)

- 第223条 工程別作業区分及び順序は、次のとおりとする。
 - 一 空中写真測量による修正
 - イ 作業計画
 - 口 撮影
 - ハー予察
 - 二 修正数值図化
 - ホ 現地調査
 - へ 修正数値編集
 - ト 数値地形図データファイルの更新
 - チ 品質評価
 - リ 成果等の整理
 - 二 TS等による修正
 - イ 作業計画
 - ロ 予察
 - ハ 修正数値図化
 - (1) 基準点の設置
 - (2) 修正細部測量
 - 二 修正数值編集
 - ホ 数値地形図データファイルの更新
 - へ 品質評価
 - ト成果等の整理
 - 三 RTK-GPS法を用いる修正
 - イ 作業計画
 - 口予察
 - ハ 修正数値図化
 - (1) 基準点の設置
 - (2) 修正細部測量
 - 二 修正数值編集
 - ホ 数値地形図データファイルの更新
 - へ品質評価
 - ト成果等の整理
 - 四 ネットワーク型RTK-GPS法を用いる修正
 - イ 作業計画

- ロー予察
- ハ 修正数値図化
 - (1) 基準点の設置
 - (2) 修正細部測量
- 二 修正数值編集
- ホ 数値地形図データファイルの更新
- へ 品質評価
- ト成果等の整理
- 五 TS等及びRTK-GPS法を併用する修正又はTS等及びネットワーク型RTK-GPS法を併用する 修正
 - イ 作業計画
 - ロ 予察
 - ハ 修正数値図化
 - (1) 基準点の設置
 - (2) 修正細部測量
 - 二 修正数值編集
 - ホ 数値地形図データファイルの更新
 - へ 品質評価
 - ト成果等の整理
- 六 既成図を用いる方法による修正
 - イ 作業計画
 - ロー予察
 - (1) 既成図の収集
 - (2) 修正箇所の抽出
 - ハ現地調査
 - 二 修正数值図化
 - (1) 現地調査結果の編集
 - (2) 座標計測による修正データの取得
 - ホ 修正数値編集
 - へ 数値地形図データファイルの更新
 - ト 品質評価
 - チ 成果等の整理
- 七 他の既成データを用いる方法による修正
 - イ 作業計画
 - 口 予察
 - ハ 修正数値図化
 - (1) 他の既成データの収集
 - (2) 他の既成データの出力図の作成
 - (3) 修正箇所の抽出
 - 二 現地調査

- ホ 修正数値編集
- へ 数値地形図データファイルの更新
- ト 品質評価
- チ 成果等の整理

(関係規定の準用)

第224条 修正測量作業については、ここに定めるもののほか、第2章から第4章までの規定を準用する。 第2節 作業計画

(要旨)

第225条 作業計画は、第11条の規定によるほか、修正範囲、修正量等を考慮の上、工程別に作成するものと する。

第3節 予察

(要旨)

- 第226条 「予察」とは、旧数値地形図データの点検、修正個所の抽出等を行い、作業方法を決定することをい う。
- 2 予察は、次のものについて行うものとする。
 - ー 旧数値地形図データのファイル構造の良否、フォーマットの良否、データの良否及び論理的矛盾について の点検
 - 二 新設又は移転改埋等を実施した基準点の調査
 - 三 各種資料図等の利用可否の判定
 - 四 修正素図と空中写真等の資料との照合
 - 五 地名、境界等の変更の調査及び資料収集
 - 六 実施順序及び作業方法
- 3 予察結果は、空中写真測量による場合は空中写真上に、既成図による場合は既成図及び旧数値地形図データを 重ね合わせ出力した出力図上に整理するものとする。

第4節 修正数值図化

第1款 空中写真測量による修正数値図化

(要旨)

第227条 本款において「修正数値図化」とは、空中写真測量により経年変化等の修正箇所の修正データを取得する作業をいう。

(方法)

- 第228条 修正データの取得は、予察結果等に基づき、第3章第9節の規定を準用する。
- 2 相互標定は、パスポイント付近で行い、対地標定は、旧数値地形図データの座標数値若しくはGPS/IMU 装置で得られた外部標定要素等を用いて行うものとする。
- 3 座標読取装置付アナログ図化機の標定は、次の方法を標準とする。
 - 一 相互標定において、6点のパスポイントの付近における残存縦視差は、密着ポジフィルム上で0.02ミリメートル以内とする。
 - 二 対地標定に使用する地物等の数は、6点以上とする。
- 4 標定時のステレオモデルの残存縦視差は、数値画像使用時では画素寸法の単位で1 画素以内を標準とする。密 着ポジフィルム使用時ではポジフィルム上で0.02ミリメートル以内とし、地上座標系との水平位置及び標高 の誤差は、次表を標準とする。

地図情報レベル	水平位置の誤差	標高の誤差
500	500 0.25m 以内 0.2m 以	
1000	0.5m 以内	0.3m 以内
2500	1.25m 以内	0.5m 以内
5000	2.5m 以内	1.0m 以内
10000	5.0m 以内	1.5m 以内

- 5 第133条の規定によるGPS/IMUデータの点検を完了した外部標定要素を用いた標定において、点検する地物等の数は6点以上とし、誤差の制限は前項の値とし、許容誤差を超えた場合には、旧数値地形図データファイルの座標値を使用して同時調整を行うものとする。
- 6 標定の結果は、標定要素とともに記録するものとする。

第2款 TS等による修正数値図化

(要旨)

第229条 本款において「修正数値図化」とは、予察結果等に基づき、TS等により修正データを取得する作業をいう。

(方法)

第230条 修正データの取得は、予察結果等に基づき、第2章の規定を準用する。

第3款 RTK-GPS法を用いる修正数値図化

(要旨)

第231条 本款において「修正数値図化」とは、予察結果等に基づきRTK-GPS法を用いて、修正データを取得する作業をいう。

(方法)

第232条 修正データの取得は、予察結果等に基づき第2章の規定を準用する。

第4款 ネットワーク型RTK-GPS法を用いる修正数値図化

(要旨)

第233条 本款において「修正数値図化」とは、予察結果等に基づき、ネットワーク型RTK-GPS法を用いて、修正データを取得する作業をいう。

(方法)

第234条 修正データの取得は、予察結果等に基づき第2章の規定を準用する。

第5款 TS等及びRTK-GPS法を併用する修正数値図化又はTS等及びネットワーク型RTK-GPS法を併用する修正数値図化

(要旨)

第235条 本款において「修正数値図化」とは、予察結果に基づき、TS等及びRTK-GPS法又はTS等及 びネットワーク型RTK-GPS法を併用して、修正データを取得する作業をいう。

(方法)

第236条 修正データの取得は、予察結果等に基づき第2章の規定を準用する。

第6款 既成図を用いる方法による修正数値図化

(要旨)

第237条 本款において「修正数値図化」とは、既成図を使用して、変化部分の座標測定を行い、修正データを 取得する作業をいう。

(使用する既成図の要件)

- 第238条 使用する既成図の要件は、次のとおりとする。
 - 一 縮尺は、旧数値地形図データの地図情報レベルに相当する縮尺以上の縮尺で作成されたものであること。
 - 二 基本測量又は公共測量の測量成果、又はこれと同等以上の精度を有するものであること。
 - 三 既成図の精度は、これにより取得された修正データが第221条第2項の規定に掲げる精度を満たすものとする。
 - 四 座標系は、原則として平面直角座標系であること。
- 2 使用する既成図には、写真地図を含むものとする。

(方法)

第239条 修正データの取得は、予察結果等に基づき、前章の規定を準用する。

第7款 他の既成データを用いる方法による修正数値図化

(要旨)

第240条 本款において「修正数値図化」とは、他の測量作業により作成された数値地形図データを使用して、 修正データを取得する作業をいう。

(使用する他の既成データの要件)

第241条 使用する他の既成データの要件は、第238条の規定を準用する。

(方法)

第242条 修正データは、予察結果等に基づき既成の数値地形図データから取得するとともに、修正データの分類コード等は、必要な変換を行うものとする。

第5節 現地調査

(要旨)

- 第243条 「現地調査」とは、修正データを作成するために必要な各種表現事項、名称等を現地において調査確認し、必要に応じて補備測量を行う作業をいう。
- 2 現地調査は、旧数値地形図データの出力図、修正データの出力図等を用いて行うものとする。

第6節 修正数值編集

(要旨)

- 第244条 「修正数値編集」とは、図形編集装置を用いて、新たに取得した修正データと旧数値地形図データとの整合性を図るための編集等を行い、編集済数値地形図データを作成する作業をいう。
- 2 図形編集装置の構成等は、第87条の規定を準用する。

(方法)

第245条 編集済数値地形図データは、取得された修正データを用いて、旧数値地形図データの加除訂正等を行い作成するものとする。

(編集済数値地形図データの点検)

- 第246条 編集済数値地形図データの点検は、スクリーンモニター又は自動製図機等による出力図を用いて行う ものとする。
- 2 編集済データの論理的矛盾の点検は、点検プログラム等により行うものとする。

第7節 数値地形図データファイルの更新

(要旨)

第247条 「数値地形図データファイルの更新」とは、製品仕様書に従って編集済数値地形図データから数値地 形図データファイルを作成し、電磁的記録媒体へ記録する作業をいう。

第8節 品質評価

(品質評価)

第248条 数値地形図データファイルの品質評価は、第44条の規定を準用する。

第9節 成果等の整理

(メタデータの作成)

第249条 数値地形図データファイルのメタデータの作成は、第45条の規定を準用する。 (成果等)

- 第250条 成果等は、次の各号のとおりとする。
 - 一 数値地形図データファイル
 - 二 品質評価表
 - 三 メタデータ
 - 四 その他の資料

第6章 写真地図作成

第1節 要旨

(要旨)

第251条 「写真地図作成」とは、数値写真を正射変換した正射投影画像を作成した後、必要に応じてモザイク 画像を作成し写真地図データファイルを作成する作業をいう。

(写真地図作成)

- 第252条 写真地図作成は、空中写真から空中写真用スキャナにより数値化した数値写真又はデジタル航空カメラで撮影した数値写真を、デジタルステレオ図化機等を用いて正射変換し、写真地図データファイルを作成する作業をいい、必要に応じて隣接する正射投影画像をデジタル処理により結合させたモザイク画像を作成する作業を含むものとする。
- 2 空中写真の撮影方法は、第3章第5節の規定を準用する。 (方法)
- 第253条 写真地図の作成は、正射投影法により行うものとする。
- 2 写真地図の精度は、次表を標準とする。

地図情報レベル	水平位置地上画素寸法	撮影縮尺	数値地形モデル		
	(標準偏差)	地上四条寸伝	1取 別 相 八	グリッド間隔	標高点
500	0.5m 以内	0.1m 以内	1/3,000~1/4,000	5m 以内	0.5m 以内
1000	1.0m 以内	0.2m 以内	1/6,000~1/8,000	10m 以内	0.5m 以内
2500	2.5m 以内	0.4m 以内	1/10,000~1/12,500	25m 以内	1.0m 以内
5000	5.0m 以内	0.8m 以内	1/20,000~1/25,000	50m 以内	2.5m 以内
10000	10.0m 以内	1.0m 以内	1/30,000	50m 以内	5.0m 以内

3 写真地図は、注記等のデータを重ね合わせることができる。

(工程別作業区分及び順序)

- 第254条 工程別作業区分及び順序は、次を標準とする。
 - 一 作業計画
 - 二 標定点の設置
 - 三 対空標識の設置
 - 四 撮影
 - 五 刺針

- 六 空中三角測量
- 七 数値地形モデルの作成
- 八正射変換
- 九 モザイク
- 十 写真地図データファイルの作成
- 十一 品質評価
- 十二 成果等の整理

(空中写真測量に関する規定の準用)

- 第255条 前条第1号から第5号まで及び第7号の作業については、次に規定するところによるほか、第3章第 2節から第10節までの規定を準用する。
 - 一 撮影に当たっては、写真地図の作成に適した良質鮮明な画質を得るように努めるものとする。
 - 二 空中三角測量の成果等は、次の各号のとおりとする。
 - イ 空中三角測量成果表(外部標定要素)
 - 口 空中三角測量実施一覧図
 - ハ 写真座標測定簿
 - 二 調整計算簿
 - ホ 精度管理表
 - へ その他の資料
 - 三 数値地形モデルの作成におけるブレークライン、等高線、標高点等の計測は、第3章第9節の規定を準用 する。
 - 四 写真地図データに重ね合わせる注記等のデータを作成する場合には、第3章第7節から第10節までの規定を準用する。

第2節 作業計画

(要旨)

第256条 作業計画は、第11条の規定によるほか、工程別に作成するものとする。

(使用する数値写真)

- 第257条 数値写真は、原則として、作業着手前1年以内に撮影されたものを用いるものとする。
- 2 使用する数値写真は、撮影時期、天候、撮影コースと太陽位置との関係等によって現れる色調差や被写体の変化を考慮して用いるものとする。

第3節 数値地形モデルの作成

(要旨)

第258条 「数値地形モデルの作成」とは、自動標高抽出技術等により標高を取得し、数値地形モデルファイルを作成する作業をいう。

(標高の取得)

- 第259条 標高は、デジタルステレオ図化機等を用いて、第253条第2項の規定を満たした精度を有し、必要に応じて局所歪みを補正するための地性線等を取得するものとする。
- 2 標高の取得には、自動標高抽出技術、等高線法、ブレークライン法及び標高点計測法又はこれらの併用法を用いるものとする。
- 3 自動標高抽出技術におけるグリッド間隔は、画像相関間隔が第253条第2項の規定による精度を満たすものとする。

- 4 等高線法による等高線の間隔は、付録7に規定する等高線の値に2を乗じたものを原則とする。ただし、等傾斜の地形では適切に間隔を広げることができる。
- 5 ブレークライン法によりブレークラインを選定する位置は、次のとおりとする。
 - 一 段差の大きい人工斜面、被覆等の地性線
 - 二 高架道路及び立体交差の道路縁
 - 三 尾根若しくは谷又は主な水涯線
 - 四 地形傾斜の連続的な変化を表す地性線
 - 五 その他地形を明確にするための地性線
- 6 標高点計測法により標高点を選定する場合は、第182条の規定を準用する。
- 7 標高を取得する範囲は、写真地図データファイルを作成する区域を網羅しているものとする。
- 8 森林地帯等の植生が密生している地域において、地表面の標高計測が困難な領域については、植生の表層面で作成することもやむを得ないものとする。ただし、地表面での数値地形モデル(DTM)とは区分し、表層面の数値表層モデル(DSM)として数値地形図データファイルに格納するものとする。
- 9 河川及び小規模な湖沼等の陸水面は、地表面に分類し、その標高は、周辺陸域の最近傍値からの内挿処理によって求めるものとする。
- 10 既成の数値地形モデルを使用する場合は、データの品質、経年変化等についての点検を行うものとする。 (数値地形モデルへの変換)
- 第260条 数値地形モデルへの変換は、前条で取得した標高により第253条第2項の規定を満たすグリッド又は不整三角網を用いるものとする。
- 2 数値地形モデルの形状をグリッドで作成する場合は、グリッド間隔は第253条第2項の規定を準用する。
- 3 不整三角網を使用する場合は、前項のグリッドと同等以上の地形表現が可能な点密度とする。
- 4 数値地形モデルを作成する範囲は、写真地図データファイルを作成する区域を網羅しているものとする。
- 5 大規模な湖沼水面及び海水面の数値地形モデルは、標高値にマイナス9999メートルなど現実に存在しない値を与えるものとする。

(数値地形モデルの編集)

- 第261条 「数値地形モデルの編集」とは、作成された標高データをステレオモデル上に表示し、著しく地表面 と異なる点を修正する作業をいう。
- 2 数値地形モデルの修正は、デジタルステレオ図化機等を用いて行うものとする。 (数値地形モデルファイルの作成)
- 第262条 数値地形モデルファイルの作成は、編集後の数値地形モデルを用いて後続の作業工程で使用する形式 により作成するものとする。
- 2 数値地形モデルファイルの格納単位は、第270条に規定する写真地図データファイルの格納単位と同一とする。
- 3 不整三角網の数値地形モデルファイルを格納する場合は、図郭にまたがる三角形は図郭線による分割処理を行 うものとする。

(数値地形モデルファイルの点検)

- 第263条 数値地形モデルファイルの点検は、前条で作成した数値地形モデルを用いて行うものとする。
- 2 数値地形モデルファイルの標高点精度は、第253条第2項の規定を準用する。
- 3 点検位置は数値地形モデルファイルから無作為に抽出された標高点とする。
- 4 点検は、デジタルステレオ図化機等を用いて計測された標高点と抽出された数値地形モデルファイルの標高点

を比較し、精度管理表にまとめるものとする。

第4節 正射変換

(要旨)

- 第264条 「正射変換」とは、数値写真を中心投影から正射投影に変換し、正射投影画像を作成する作業をいう。 (正射投影画像の作成)
- 第265条 正射投影画像は、数値写真を標定し、数値地形モデルを用いて作成するものとする。
- 2 正射投影画像の地上画素寸法は、第253条第2項の規定を準用する。
- 3 内部標定は、第170条の規定を準用する。
- 4 対地標定は、空中三角測量等で得られた成果を用いて行うものとする。 第5節 モザイク

(要旨)

第266条 「モザイク」とは、隣接する正射投影画像をデジタル処理により結合させ、モザイク画像を作成する 作業をいう。

(方法)

- 第267条 モザイクは、隣接する正射投影画像の接合部で著しい地物の不整合及び色調差が生じないように行う ものとする。
- 2 モザイクは、線状対象物においては不整合のないように努め、その他の対象物においては第253条第2項に 規定する水平位置の精度を満たすものとする。

(モザイク画像の点検)

- 第268条 モザイク画像の点検は、主要地物、接合部のずれ及び正射投影画像間の色調差について行うものとする。
 - 一 接合部の位置ずれについては、著しい歪みや段差について点検するものとする。
 - 二 接合部の色調の差については、著しい相違について点検するものとする。

第6節 写真地図データファイルの作成

(要旨)

- 第269条 「写真地図データファイルの作成」とは、製品仕様書に従ってモザイク画像から写真地図データファイルを図葉単位に切り出し、写真地図データファイルの位置情報として位置情報ファイルを作成し、電子記録媒体に記録する作業をいう。
- 2 隣接する図葉においては、原則として同一のモザイク画像から図葉単位へ切り出すものとする。
- 3 注記等のデータを取得した場合には、第3章第9節又は第10節の規定により格納するものとする。 (写真地図データファイル等の格納)
- 第270条 写真地図データファイルの格納単位は、国土基本図図郭(「付録7に規定する地図情報レベル 2500の図郭」以下「国土基本図図郭」という。)を基本とした図葉単位とし、適宜分割することができる。
- 2 写真地図データファイルは、原則としてTIFF形式で格納するものとする。
- 3 位置情報ファイルは、図葉ごとに作成するものとする。
- 4 位置情報ファイルは、その範囲を示す地理的ファイルとして原則としてテキスト (ASCII) ファイル又は ワープロ形式で格納するものとする。

第7節 品質評価

(品質評価)

第271条 写真地図データファイルの品質評価は、第44条の規定を準用する。

第8節 成果等の整理

(メタデータの作成)

第272条 写真地図データファイルのメタデータの作成は、第45条の規定を準用する。 (成果等)

- 第273条 成果等は、次の各号のとおりとする。
 - 一 写真地図データファイル
 - 二 位置情報ファイル
 - 三 数値地形モデルファイル
 - 四 品質評価表
 - 五 メタデータ
 - 六 その他の資料

第7章 航空レーザ測量

第1節 要旨

(要旨)

- 第274条 「航空レーザ測量」とは、航空レーザ測量システムを用いて地形を計測し、格子状の標高データである数値標高モデル(以下「グリッドデータ」という。)等の数値地形図データファイルを作成する作業をいう。 (規格)
- 第275条 数値標高モデルの規格は、地上での格子間隔で表現するものとする。
- 2 格子間隔と地図情報レベルの関係は、次表を標準とする。

地図情報レベル	格子間隔
1000	1m 以内
2500	2m 以内
5000	5m 以内

(工程別作業区分及び順序)

- 第276条 工程別作業区分及び順序は、次を標準とする。
 - 一 作業計画
 - 二 GPS基準局の設置
 - 三 航空レーザ計測
 - 四 調整用基準点の設置
 - 五 三次元計測データ作成
 - 六 オリジナルデータ作成
 - 七 グラウンドデータ作成
 - 八 グリッドデータ作成
 - 九 等高線データ作成
 - 十 数値地形図データファイル作成
 - 十一 品質評価
 - 十二成果等の整理

第2節 作業計画

(要旨)

第277条 作業計画は、第11条の規定によるほか、工程別に作成するものとする。

- 2 航空レーザ計測の作業計画は、GPS衛星配置等を考慮して、計測諸元、飛行コース、GPS基準局の設置場所及びGPS観測について作成するものとする。
- 3 「計測諸元」とは、対地高度、対地速度、コース間重複(%)、スキャン回数、スキャン角度、パルスレート、飛行方向及び飛行直交方向の標準的取得点間距離等をいう。三次元計測データの標準的取得点間距離(β)はグリッドデータの格子間隔を(α)とし、定数(θ)を用いた次の式により求められるとおり、格子間隔よりも小さい値でかつ格子間隔四方に1点以上になるように設計するものとする。

(式) $\beta = \alpha / \theta$ (α :格子間隔 β :標準的取得点間距離 θ :1.1~1.5)

- 4 飛行コース計画は、データの標準的取得点間距離が均一になるように設計するものとする。ただし、地形条件 並びに気象条件を考慮した上で、飛行コース間重複(或いは往復)を用いて、標準的取得点間距離の均一化を図る ものとする。
- 5 飛行コース間重複は、30パーセントを標準とする。
- 6 計測対象地域は、作業地域の外周を50メートル以上延伸して計測するように設計する。ただし、路線計測の場合はこの限りでない。
- 7 GPS基準局の設置場所は、上空視界や基線距離等を考慮し計画するものとする。
- 8 GPS観測計画は、最新の軌道情報を用いて受信可能な衛星数等を考慮して行うものとする。 第3節 GPS基準局の設置

(GPS基準局の設置)

- 第278条 「GPS基準局の設置」とは、航空レーザ測量において、レーザ測距装置の位置をキネマティックGPS測量で求めるための地上GPS基準局を設置することをいう。
- 2 GPS基準局として、電子基準点を用いることができる。
- 3 GPS基準局の設置は、計測対象地域内の基線距離が50キロメートルを超えないように選定するものとする。
- 4 GPS観測のデータ取得間隔は、1秒以下でなければならない。
- 5 GPS基準局を設置する場合は、1級基準点測量及び3級水準測量により水平位置及び標高値を求めるものと する。
- 6 GPS基準局を設置した場合は、GPS基準局明細表を作成するものとする。

(GPS基準局の点検)

- 第279条 GPS基準局の点検は、GPS基準局の設置時に状況調査を行い、次の項目について行うものとする。
 - 一 上空視界の確保及びデータ取得の有無
 - 二 計測対象地域における選定の良否
 - 三 GPS基準局の水平位置及び標高値精度の確保
 - 四 受信アンテナの固定の確保

第4節 航空レーザ計測

(航空レーザ計測)

- 第280条 「航空レーザ計測」とは、航空レーザ測量システムを用いて、計測データを取得する作業をいう。 (航空レーザ測量システム)
- 第281条 航空レーザ測量システムは、第122条に規定するGPS/IMU装置、レーザ測距装置及び解析ソフトウェアから構成するものとする。
- 2 構成する機器等の性能は、次のとおりとする。
 - ー 航空機搭載のGPS受信アンテナ及び受信機
 - イ GPSアンテナは、航空機の頂部に確実に固定できること。

- ロ GPS観測データを1秒以下の間隔で取得できること。
- ハ 2周波で搬送波位相を観測できること。
- 二 GPS解析ソフトウェア
 - イ 連続キネマティック方式による基線ベクトル解析機能を有すること。
 - ロ解析結果の評価項目の表示機能を有すること。

Ξ. IMU

イ IMUは、センサ部のローリング、ピッチング、ヘディングの3軸の傾き及び加速度が計測可能で解析で得られる標準偏差が次に示す性能と同等以上を有すること。

センサ部	標準偏差
ローリング	0.015度
ピッチング	0.015度
ヘディング	0.035度
取得間隔	0.005秒

- ロ I MUは、レーザ測距装置に直接マウントできること。
- 四 レーザ測距装置
 - イ ファーストパルス及びラストパルスの2パルス以上計測できること。
 - ロスキャン機能を有すること。
 - ハ 眼等の人体に悪影響を防止する機能を有していること。
 - ニ 安全基準が明確に示されていること。
- 五 解析ソフトウェア は、計測点の三次元位置が算出できること。
- 六 航空レーザ測量システムは、作業着手時の6ヶ月以内にキャリブレーションサイトでの機器点検を行ったものを用いるものとする。
- 七 機器点検内容を記録した点検記録は、作業着手前に作成するものとする。

(計測データの取得)

- 第282条 計測データの取得は、GPS基準局のGPS観測データ、航空機上のGPS観測データ、IMU観測データ及びレーザ測距データを取得するものとする。
- 2 同一コースの航空レーザ計測は、直線かつ等高度で行うことを原則とする。ただし、回転翼航空機を利用する場合はこの限りでない。
- 3 同一コースにおける対地速度は一定の速度を保つように努めるものとする。
- 4 計測対象地域は、作業地域の外周を50メートル以上延伸して取得するものとする。
- 5 GPS観測については、次のとおり行うものとする。
 - 一 GPS基準局及び航空機上のGPS観測のデータ取得間隔は1秒以下とする。
 - 二 取得時のGPS衛星の数は、5個以上とする。
 - 三 GPS観測結果等は、GPS衛星の配置等を記載した手簿、記簿等の資料、基線解析結果等を記載した精 度管理表に整理する。

(航空レーザ用数値写真)

- 第283条 航空レーザ用数値写真は、空中から地表を撮影した画像データで、フィルタリング及び点検のために 取得するものとする。
- 2 航空レーザ用数値写真は、航空レーザ計測と同時期に撮影することを標準とする。

- 3 航空レーザ用数値写真は、建物等の地表遮蔽物が確認できる解像度とし、地上画素寸法は1.0メートル以下 を標準とする。
- 4 航空レーザ用数値写真の撮影範囲は、計測対象地域を網羅するものとする。 (航空レーザ計測の点検)
- 第284条 航空レーザ計測の点検は、航空レーザ計測の開始前及び終了時に、次の項目について行うものとする。
 - 一 GPS基準局、航空機搭載のGPSの作動及びデータ収録状況の良否
 - 二 サイクルスリップ状況の有無
 - 三 航空レーザ計測範囲の確保、数値写真等の良否
 - 四 対地高度及び飛行コースの良否
- 2 点検資料は、次のとおりとする。
 - 一 GPS解析処理時に出力される計測時間帯の衛星数及びPDOP図
 - 二 コースごとの計測範囲を重ね書きした計測漏れの点検図
 - 三 飛行コース上に飛行軌跡を展開した航跡図
 - 四 航空レーザ計測記録
 - 五 航空レーザ計測作業日誌

第5節 調整用基準点の設置

(調整用基準点の設置)

- 第285条 「調整用基準点の設置」とは、三次元計測データの点検及び調整を行うための基準点(以下「調整基準点」という。)を設置する作業をいう。
- 2 調整用基準点は、三次元計測データの現地における位置が確認できる平坦な箇所で、調整用基準点の計測に支障がない場所に設置するものとする。
- 3 調整用基準点の数は、次の値を標準とする。(作業地域の面積(km²)/25) +1 (小数部は切り上げ、最低4点以上)
- 4 調整用基準点の配点は、作業地域形状の四隅に選定し、作業地域全体にできるだけ均一に、かつ水準点の近傍に配置するものとする。
- 5 調整基準点の設置場所は、所定の格子間隔の2倍から3倍までの辺長があるグラウンド、空き地、道路、公園、 屋上等、樹木や歩道の段差等の障害物がない場所に設置するものとする。

(調整用基準点の計測)

- 第286条 調整用基準点の計測は、作業地域、作業方法等の条件を考慮し、4級基準点測量及び4級水準測量により実施するものとする。
- 2 近傍に水準点がない場合は、調整用基準点の計測点に最も近い2点以上の水準点及び調整用基準点の計測点に GPS受信機を設置し、スタティック法で行うことができる。
- 3 調整用基準点の配点図及び調整用基準点明細表を作成するものとする。なお、調整用基準点明細表には現況等 を撮影した写真を添付する。

第6節 三次元計測データ作成

(三次元計測データの作成)

- 第287条 三次元計測データは、航空レーザ計測データを統合解析して作成する。
- 2 三次元計測データを作成する際は、断面表示、鳥瞰表示等により、隣接する建物等に複数回反射して得られる ノイズ等によるエラー計測部分を削除するものとする。
- 3 三次元計測における地上座標値は、1センチメートル単位とする。

(三次元計測データの点検)

- 第288条 三次元計測データの点検は、調整用基準点を用いて比較点検を行うものとする。
- 2 調整用基準点と三次元計測データとの比較点検は、次のとおりとする。
 - 一 調整用基準点と比較する三次元計測データは、所定の格子間隔と同一半径の円又は2倍辺長の正方形内の 計測データを平均したものとする。
 - 二 調整用基準点と三次元計測データとの較差を求めるものとする。
 - 三 全ての調整用基準点における較差の平均値と標準偏差を求めることを標準とする。
 - 四 点検結果は、三次元計測データ点検表及び調整用基準点調査表に整理するものとする。
 - 五 平均値(m)と標準偏差(σ)は、次の計算式で求めるものとする。

$$m = \sum_{i=1}^{n} \Delta Hi / n$$
 $\sigma = \sqrt{\sum_{i=1}^{n} (\Delta Hi - m)^{2} / n}$

△Hi:調整用基準点の標高値と三次元計測データの標高値との較差

n :点数

3 点検の結果、標準偏差が25センチメートル以上又は平均値が±25センチメートル以上の場合は、原因を 調査の上、再計算処理又は再測等の是正処置を講ずるものとする。ただし、較差の傾向が、作業地域全体で同じ 場合は第295条の規定に基づき補正を行うものとする。

(コース間標高値の点検)

- 第289条 コース間標高値の点検は、コース間の重複部分に点検箇所を選定し、コースごとの標高値の比較点検 を行うものとする。
- 2 点検箇所の選定と点検は、次のとおりとする。
 - 一 点検箇所の数は、(コース長 km/10+1)の小数点以下切り上げとする。
 - 二 点検箇所の配置は、重複部分のコースの端点に取り、重複部分の上下に均等に配置する。
 - 三 点検箇所の選定において、上記を満たすことのできない山間部、線状地域等の地形条件の場合は配置及び 点数を変更することができる。
 - 四 点検箇所の標高値は、平坦で明瞭な地点を選定し、格子間隔と同一半径の円又はおおむね2倍に辺長の正 方形内の計測データを平均したものとする。
 - 五 重複コースごとの各コースの点検箇所の標高値の較差を求め、較差の平均値及び標準偏差を求めるものとする。
 - 六 重複コースごとの標高値の較差の平均値が±30センチメートル以上の場合は、点検箇所の再選定又は点 検結果からキャリブレーション値の再補正等の再計算により調整を行うこと。
- 3 コース間標高値の点検の整理は、コース間点検箇所残差表で行うこと。また、配点図は、コース間点検箇所配 点図を作成するものとする。

(再点検)

- 第290条 作業の終了時において、次のとおり再点検を行うものとする。
 - 一 調整用基準点の配点及び設置箇所を、調整用基準点配点図及び調整用基準点明細表により点検するものとする。
 - 二 調整用基準点と三次元計測データとの較差の平均値と標準偏差が、許容範囲内かを三次元計測データ点検表 及び調整用基準点調査表により点検するものとする。
 - 三 点検箇所の配点と選点箇所は、数値写真及びコース間点検箇所配点図により点検するものとする。
 - 四 点検箇所の標高値の較差の平均値と標準偏差が、許容範囲かをコース間点検箇所残差表により点検するもの

とする。

(写真地図データの作成)

- 第291条 写真地図データの作成は、三次元計測データ等を用いて航空レーザ用数値写真の正射変換を行い作成 するものとする。
- 2 写真地図データの作成は、次のことに留意し作成するものとする。
 - 一 写真地図データは、正射変換した航空レーザ用数値写真を貼り合わせ、国土基本図図郭単位に作成することを原則とする。
 - 二 写真地図データの形式は、TIFF形式とする。
 - 三 写真地図データの作成時には、製品仕様書に従ってASCIIファイルで写真地図データの地理的範囲を表す位置情報ファイルを作成するものとする。

(水部ポリゴンデータの作成)

- 第292条 水部ポリゴンデータは、写真地図データを用いて水部の範囲を対象に作成するものとする。
- 2 「水部」とは、海部のほか、河川、池等地表が水で覆われている場所とする。
- 3 水部ポリゴンデータの作成については、所定の格子間隔により決定するものとする。ただし、水部が存在しない場合は、作業を省略することができる。

(欠測率の計算)

- 第293条 欠測率の計算は、計画する格子間隔を単位とし、三次元計測データの欠測の割合を算出するものとする。
- 2 「欠測」とは、三次元計測データを格子間隔で区切り、1 つの格子内に三次元計測データがない場合をいう。 ただし、水部ポリゴン界線内の地域は含まないものとする。
- 3 欠測率は、対象面積に対する欠測の割合を示すものであり、次の計算式で求めるものとする。 欠測率=(欠測格子数/格子数) ×100
- 4 対象面積は、国土基本図図郭単位とし、欠測率は、欠測率調査表に整理するものとする。
- 5 欠測率は、格子間隔が1メートルを超える場合は10パーセント以下、1メートル以下の場合は15パーセント以下を標準とする。

(データの点検)

- 第294条 データの点検は、図形編集装置等を用いて行うものとする。
- 2 点検は、次の各号のとおりとする。
 - 一 主要地物(道路等)に着目し、写真地図データの画像接合部の著しいずれの有無
 - 二 水部ポリゴンデータの取得漏れの有無
 - 三 水部ポリゴンデータ接合の良否
 - 四 欠測率の良否

第7節 オリジナルデータ作成

(オリジナルデータの作成)

- 第295条 オリジナルデータは、三次元計測データから作成するものとする。
- 2 調整用基準点と三次元計測データとの較差の平均値が±25センチメートル以上の場合は、地域全体について補正を行うことを標準とする。
- 3 補正処理は、地域全体の三次元データの標高値を上下の一律シフトの平行移動による補正とする。
- 4 作成結果は、調整用基準点残差表により整理するものとする。

(オリジナルデータの点検)

- 第296条 オリジナルデータの点検は、オリジナルデータ作成の補正前及び補正後において行い、作業の終了時 において再点検を行うものとする。
- 2 補正を行いオリジナルデータを作成した場合は、補正処理を実施した結果の良否及び補正後の較差の平均値と標準偏差が許容範囲内であるかを調整用基準点残差表により点検するものとする。

第8節 グラウンドデータの作成

(グラウンドデータの作成)

- 第297条 グラウンドデータは、オリジナルデータのうち地表面の標高を示すデータをいい、オリジナルデータからフィルタリングを行い作成するものとする。
- 2 グラウンドデータは、作業地域の外周を50メートル以上延伸して作成するものとする。
- 3 「フィルタリング」とは、地表面以外のデータを取り除く作業をいう。対象項目は、次表を標準とする。

	道路施設等	道路橋(長さ5m以上)、高架橋、横断歩道橋照明灯、信号灯、道路情報板等	
交通施設 は 遊 施 設		鉄道橋(長さ5m以上)、高架橋(モノレールの高架橋含む)、跨線橋、プラット	
父旭旭政		フォーム、プラットフォーム上屋、架線支柱、信号灯支柱	
	移 動 体	駐車車両、鉄道車両、船舶	
建物等	建物及び付属	一般住宅、工場、倉庫、公共施設、駅舎、無壁舎(温室、ビニールハウス)、競技	
度 物 守 	施設等	場のスタンド、門、プール(土台部分含む)、へい	
小物体		記念碑、鳥居、貯水槽、肥料槽、給水塔、起重機、煙突、高塔、電波塔、灯台、灯	
7 10 14		標、輸送管(地上、空間)、送電線	
水部等	水部に関する	浮き桟橋、水位観測施設、河川表示板	
小司寺	構造物		
植生		樹木**1、竹林**1、生垣**1	
その他	その他	大規模な改変工事中の地域※2、地下鉄工事等の開削部、資材置場等の材料、資材	
備考	※1 地表面とし	面として、判断できる部分は可能な限り採用するものとする。	
	※2 地表面とし	也表面として、ほぼ恒久的であると判断できるものは採用するものとする。	

4 大規模な地表遮蔽部分のフィルタリングにおいて、地形表現に不具合が生じる場合は、周囲のフィルタリングしていないグラウンドデータ等を用いて内挿補間を行うものとする。

(既存データとの整合)

- 第298条 既存データとの整合は、既存データとグラウンドデータとの重複区間を設定して比較及び点検を行う ものとする。
- 2 点検箇所は、次のとおり範囲を設定するものとする。
 - 一 国土基本図図郭単位ごとに1箇所以上で、1箇所あたり100 点以上を比較及び点検することを原則とする。
 - 二 調整用基準点がある場合は、その点を含めるものとする。
 - 三 地表遮蔽物の影響が少なく、グラウンド、空き地、道路、公園等で平坦な箇所であること。
- 3 点検方法は、次のとおりとする。
 - 一 重複範囲内のグラウンドデータを平均化し比較点検をするものとする。
 - 二 較差の平均値及び標準偏差を求めるものとする。
 - 三 標準偏差が30センチメートル以上の場合は、オリジナルデータ等も考慮した原因を調査した上、再計算 処理又は再計測等の是正措置を講じるものとする。

- 四 既存データとしてグラウンドデータがない場合は、既存データのグリッドデータとの較差に代えることができる。
- 五 点検結果は、既存データ検証結果表に整理するものとする。 (フィルタリング点検図の作成)
- 第299条 フィルタリング点検図は、フィルタリングが適切に行われたか否か、作成されたグラウンドデータの 異常の有無について点検するために作成するものとする。
- 2 フィルタリング点検図は、「写真地図データ及び等高線データの重ね合せ図」及び「写真地図データ、オリジ ナルデータ及び水部ポリゴンの重ね合せ図」の2種類を作成するものとする。ただし、写真地図データが作成さ れていない場合は、写真地図データに代えてオリジナルデータから作成された陰影段彩図等とすることができる。
- 3 フィルタリング点検図は、国土基本図図郭単位で作成するものとする。
- 4 フィルタリング点検図は、格子間隔の地図情報レベルに対応した縮尺で出力するものとする。
- 5 「写真地図データ及び等高線データの重ね合せ図」における等高線の間隔及び色区分は、次表を標準とする。 また、計曲線には等高線データ数値を付加し、凹地については凹地記号をそれぞれ付加するものとする。

等高線種類	間隔	色 区 分
計曲線	5m	黄 色
主曲線	1m	赤 色

6 「写真地図データ、オリジナルデータ及び水部ポリゴンの重ね合せ図」における色区分は、次表を標準とする。

項	目	色区	分分
オリジナルデータでグラウンドデー	タとして採用された点	赤	色
オリジナルデータでフィルタリンク	により削除された点	黄	色
水部ポリゴンの境界線		紺	色

- 7 フィルタリング点検図は、図郭から50メートル延伸して作成するものとする。 (フィルタリング点検図の点検)
- 第300条 フィルタリング点検図の点検は、フィルタリング点検図でフィルタリングの良否について行うものとする。
- 2 フィルタリングについて、点検測量を全体の5パーセント実施するものとする。
- 3 次の項目について点検するものとする。
 - 一 写真地図データで判読できる植生や橋、建物等の人工構造物に不要な等高線データの有無
 - 二 写真地図データで判読できる植生や橋、建物等の人工構造物にオリジナルデータ
 - 三 水部ポリゴンが写真地図データの水部と一致しているか。
- 4 フィルタリングの良否の判断が困難な場合は、図形編集装置を用いた断面表現等により点検するものとする。 第9節 グリッドデータの作成

(グリッドデータの作成)

- 第301条 グリッドデータは、グラウンドデータから内挿補間により作成するものとする。
- 2 グリッドデータの標高値の精度は、次表を標準とする。

項目	標高値(標準偏差)
格子間隔内にグラウンドデータがある場合	0.3m以内
格子間隔内にグラウンドデータがない場合	2.0m以内

3 グリッドデータは、国土基本図図郭単位に、南北及び東西方向にそれぞれ任意間隔で分割し、製品仕様書に定

められた格子間隔で作成するものとする。

- 4 グリッドデータへの標高値内挿補間法は、グリッドデータの使用目的及びグラウンドデータの密度を考慮し、 最近隣法、TIN、IDW、Kriging、平均法等のいずれかを用いるものとする。
- 5 グリッドデータの各点については、必要に応じてフィルタリング状況又は水部状況を表す属性を付与するものとする。
- 6 グリッドデータにおける標高値の単位は、四捨五入し0.1メートルとする。 (グリッドデータ点検図の作成)
- 第302条 グリッドデータ点検図は、作成されたグリッドデータに異常がないか及び隣接図との接合が適切に行われているかを点検するために作成する。
- 2 グリットデータの点検を図形編集装置により行う場合には、グリッドデータ点検図作成を省略することができる。
- 3 グリッドデータ点検図は、国土基本図図郭単位に作成された陰影段彩図を標準とする。
- 4 グリッドデータ点検図は、地図情報レベル5000から1000を標準として出力するものとする。
- 5 グリッドデータ点検図は、既存データが存在する場合は、作業地域の外周を50メートル以上延伸して作成するものとする。

(グリッドデータ点検図の点検)

- 第303条 グリッドデータ点検図の点検は、グリッドデータ点検図又は図形編集装置を用いて行うものとする。
- 2 点検は、次のとおりとする。
 - 一 所定の格子間隔等の適否
 - 二 標高値の誤記及び脱落
 - 三 接合の良否

第10節 等高線データ作成

(等高線データの作成)

- 第304条 等高線データは、グラウンドデータ又はグリッドデータを用いて作成するものとする。
- 2 等高線データ作成は、次のとおりとする。
 - 一等高線データは、国土基本図図郭単位で作成するものとする。
 - 二 主曲線間隔1メートル、2メートル、5メートル間隔の等高線データを作成する際のグラウンドデータ又はグリッドデータの間隔は、次表を標準とする。なお、グラウンドデータ及びグリッドデータは、作業地域の外周50メートル以上延伸したものを使用するものとする。

地図情報	主曲線	計曲線	グラウンドデータ、グリッドデータ		
レベル	土皿版	口一四/炒	約1m	約2m	約5m
1000	1 m	5 m	0	_	_
2500	2 m	10m	0	0	_
5000	5 m	25m	0	0	0

(等高線データの点検)

- 第305条 等高線データの点検は、図形編集装置、出力図等を用いて行うものとする。
- 2 点検内容は、次のとおりとする。
 - 一 等高線データの誤記及び脱落
 - 二 等高線データ形状の良否

第11節 数値地形図データファイルの作成

(要旨)

- 第306条 本節において「数値地形図データファイルの作成」とは、製品仕様書に従って数値地形図データファイルを作成し、電磁的記録媒体に記録する作業をいう。
- 2 数値地形図データファイルは、次の各号のとおりとする。
 - 一 オリジナルデータ
 - 二 グラウンドデータ
 - 三 グリッドデータ
 - 四 水部ポリゴン
 - 五 写真地図 データ
 - 六 位置情報ファイル
 - 七 等高線データ
 - 八 格納データリスト

第12節 品質評価

(品質評価)

第307条 数値地形図データファイルの品質評価は、第44条の規定を準用する。

第13節 成果等の整理

(メタデータの作成)

第308条 数値地形図データファイルのメタデータの作成は、第45条の規定を準用する。 (成果等)

- 第309条 成果等は、次の各号のとおりとする。
 - 一 数値地形図データファイル
 - 二 作業記録
 - 三 品質評価表
 - 四 メタデータ
 - 五 その他の資料

第8章 地図編集

第1節 要旨

(要旨)

第310条 「地図編集」とは、既成の数値地形図データを基に、編集資料を参考にして、必要とする表現事項を 定められた方法によって編集し、新たな数値地形図データ(以下「編集原図データ」という。)を作成する作 業をいう。

(基図データ)

- 第311条 「基図データ」とは、編集原図データの骨格的表現事項を含む既成の数値地形図データをいう。
- 2 基図データは、内容が新しく、かつ、必要な精度を有するものでなければならない。
- 3 基図データは、編集原図データより地図情報レベルの精度の高いものでなければならない。 (地図編集)
- 第312条 地図編集は、原則として編集原図データの地図情報レベルで行うものとする。 (編集資料)
- 第313条 「編集資料」とは、基準点測量成果、地図(数値地形図データ及び写真地図データを含む。)、空中写真、数値図化データ及びその他の資料をいう。

2 編集資料は、基図データと同様に、内容が新しく、かつ、必要な精度及び信頼性を有するものでなければならない。

(工程別作業区分及び順序)

- 第314条 工程別作業区分及び順序の標準は、次の各号のとおりとする。
 - 一 作業計画
 - 二 資料収集及び整理
 - 三 編集原稿データの作成
 - 四 編集
 - 五 品質評価
 - 六成果等の整理

第2節 作業計画

(要旨)

第315条 作業計画は、第11条の規定によるほか、基図データ及び編集資料を考慮し、作業工程別に作成する ものとする。

第3節 資料収集及び整理

(要旨)

- 第316条 「資料収集及び整理」とは、基図データ及び編集資料を収集し、内容を点検の上、後続の作業工程を 考慮して整理する作業をいう。
- 2 収集した資料は、図式の項目別、地域別、図葉別等に分類及び整理するものとする。
- 3 内容の正確さ及び信頼性について分析及び評価するものとする。

第4節 編集原稿データの作成

(要旨)

- 第317条 「編集原稿データの作成」とは、基図データ及び編集資料を図形編集装置に表示させ又は取り込む作業をいう。
- 2 図形編集装置の構成は、第87条の規定を準用する。

(編集原稿データの作成)

第318条 編集原稿データの作成は、基図データ及び編集資料の必要な部分を結合し又は切り出して作成するものとする。

第5節 編集

(要旨)

第319条 本節において「編集」とは、編集資料を参考に、図形編集装置を用いて編集原図データを作成する作業をいう。

(編集原図データの作成)

- 第320条 編集原図データの作成は、図形編集装置を用いて編集原稿データを付録7に基づき、適切に取捨選択、総合描示等の編集を行い、編集原図データを作成するものとする。
- 2 注記データは、基図データ及び編集資料又はその他の資料に基づき、注記の位置、字大、字隔等を決定し、その属性等も併せて作成するものとする。

(接合)

第321条 隣接図との接合は、図郭線上において、相互の表現事項が正しい関係位置となるように行うものとする。

2 編集原図データを図葉単位で作成する場合は、隣接する図郭の接合部における表示事項及び属性は、図郭線上において座標を一致させるものとする。

第6節 品質評価

(品質評価)

第322条 編集原図データの品質評価は、第44条の規定を準用する。

第7節 成果等の整理

(メタデータの作成)

第323条 編集原図データのメタデータの作成は、第45条の規定を準用する。

(成果等)

- 第324条 成果等は、次の各号のとおりとする。
 - 一 数値地形図データ(編集原図データ)
 - 二 基図データ、編集原図データ等出力図
 - 三 品質評価表
 - 四 メタデータ
 - 五 その他の資料

第9章 基盤地図情報の作成

第1節 要旨

(要旨)

- 第325条 「基盤地図情報の作成」とは、第8条に規定する基盤地図情報を作成する作業をいう。
- 2 基盤地図情報の作成は、既存の基盤地図情報を位置の基準として新たな数値地形図データを作成する作業を含むものとする。
- 3 基盤地図情報の製品仕様書には、項目及び基準に関する省令第1条に規定する項目以外の数値地形図データを 含めることができる。
- 4 基盤地図情報のうち、測量の基準点の設置は第2編の規定を準用し、本章では数値地形図データの作成について規定するものとする。
- 5 既に基盤地図情報が存在している作業地域において、新たに数値地形図データの測量を行う場合は、基本法第 16条第1項の規定に基づく基本法第2条第3項の基盤地図情報の整備に係る技術上の基準(平成19年国土交通省告示第1144号。以下「技術上の基準」という。)の定める技術的基準に従い、基盤地図情報を位置の基準として作成するものとする。なお、基となる基盤地図情報の精度等は、メタデータ等によってあらかじめ確認しなければならない。
- 6 基盤地図情報を利用して実施する修正測量、地図編集等については、図葉間の調整を図ることができる。 第2節 基盤地図情報の作成方法

(基盤地図情報の作成方法)

- 第326条 基盤地図情報の作成(更新を含む。以下同じ。)方法は、新たな測量作業による方法及び既存の測量成果の編集により作成する方法によるものとする。
- 2 新たな測量作業による方法は、第2章から前章までの規定を適用する。
- 3 既存の測量成果を編集する方法は、第3節の規定を適用する。
- 4 新たな測量作業によって基盤地図情報を作成する場合の測量方法は、製品仕様書に規定する要求事項を満たす 適切な整備方法を選択するものとする。
- 5 「既存の測量成果等」とは、基本測量成果及び公共測量成果に、工事竣工図その他の地図に準ずる図面類(以

下「地図に準ずる資料」という。) を加えたものをいう。

6 基盤地図情報の作成は、複数の作成方法を組み合わせて行うことができる。

第3節 既存の測量成果等の編集による基盤地図情報の作成

(要旨)

第327条 「既存の測量成果等の編集による基盤地図情報の作成」とは、当該作業地域における既存の基本測量成果、公共測量成果及び地図に準ずる資料を用いて新たな基盤地図情報を作成することをいう。

(工程別作業区分及び順序)

- 第328条 工程別作業区分及び順序は、次のとおりとする。
 - 一 作業計画
 - 二 既存の測量成果等の収集及び整理
 - 三 基盤地図情報を含む既存の測量成果等の調整
 - 四 基盤地図情報項目の抽出
 - 五. 品質評価
 - 六 成果等の整理

第4節 作業計画

(要旨)

第329条 作業計画は、第11条の規定によるほか、既存の測量成果等を考慮し、作業工程別に作成するものとする。

第5節 既存の測量成果等の収集及び整理

(要旨)

- 第330条 「既存の測量成果等の収集及び整理」とは、当該作業地域における既存の基本測量成果及び公共測量成果に加えて、工事竣工図その他の地図に準ずる資料を収集し、内容を点検の上、後続の作業を考慮して整理する作業をいう。
- 2 作業着手前に、当該作業地域における既存の基本測量成果及び公共測量成果に加えて、工事竣工図その他の地図に準ずる資料を収集するものとする。
- 3 基盤地図情報の製品仕様書に適合する既存の測量成果等を選定し、整理する。なお、既存の測量成果等は、基 盤地図情報の項目ごとに選定することができる。
- 4 既存の基本測量成果、公共測量成果及び地図に準ずる資料の収集に当たっては、併せてデータの空間範囲、時間範囲、品質等を把握できる製品仕様書、メタデータ等の資料を収集するものとする。
- 5 収集した既存の測量成果等の中の基盤地図情報の採否については、既存の測量成果等と基盤地図情報の取得基準を比較し確認するものとする。
- 6 既存の測量成果等に含まれる地物の品質が、基盤地図情報に適合しているか又は調整により適合できるかを確認するものとする。
- 7 既存の測量成果等の系譜 (更新履歴、作成方法等) を調べ、基盤地図情報適合しているか確認するものとする。
- 8 地図に準ずる資料を用いる場合は、工事の施工状況等に基づき現地との整合性を確認するものとする。
- 9 基盤地図情報の基情報となる既存の測量成果等が複数存在する場合は、最も位置精度及び現状を適切に反映している既存の測量成果等を選定するものとする。

第6節 基盤地図情報を含む既存の測量成果等の調整

(要旨)

第331条 「基盤地図情報を含む既存の測量成果等の調整(以下「位置整合性等の向上」という。)」とは、既

存の測量成果等に記載されている地物について、図葉間の接合及び相対位置の調整を行うことをいう。

2 隣接する区域の基盤地図情報との調整は、隣接する計画機関との協議の上、方法、時期等を決定するものとする。

(位置整合性等の向上の区分)

- 第332条 基盤地図情報の位置整合性等の向上の作業区分及び作業内容は、次のとおりとする。
 - 一 接合は、異なる計画機関により整備された又は異なる時期に作成された基盤地図情報の境界部において、同 一項目の座標を一致させる作業とする。
 - 二 相対位置の調整は、基盤地図情報の項目間の相対的な位置関係を調整する作業とする。

(接合)

第333条 基盤地図情報の接合は、技術上の基準を適用する。

(相対位置の調整)

- 第334条 基盤地図情報の相対位置の調整は、技術上の基準を適用する。
- 2 前項の技術上の基準が規定する既存の基盤地図情報の利用基準に適合する基盤地図情報を相対位置の基準とする場合、他の基盤地図情報の項目との整合をとることができる。
- 3 相対位置の調整は、次の各号によるものとする。
 - 一 位相の調整は、基盤地図情報間の包含、一致、オーバーラップ、接合及び離接の関係について、製品仕様書 の規定を満たすよう、相対位置を調整する作業とするものとする。
 - 二 相対距離の調整は、基盤地図情報間の相対距離に関して、製品仕様書の規定を満たすよう、相対位置を調整する作業とするものとする。

第7節 基盤地図情報項目の抽出

(要旨)

- 第335条 「基盤地図情報項目の抽出」とは、位置整合性等を向上させた既存の測量成果等から、基盤地図情報 項目を抽出し、基盤地図情報のデータ集合を作成する作業をいう。
- 2 抽出する項目の範囲は、項目及び基準に関する省令に定める項目が規定された製品仕様書に従うものとする。
- 3 基盤地図情報のデータ集合は、製品仕様書に規定する符号化仕様に従うものとする。

第8節 品質評価

(要旨)

第336条 基盤地図情報の品質評価は、第44条の規定を準用する。

第9節 成果等の整理

(メタデータの作成)

第337条 基盤地図情報のメタデータの作成は、第45条の規定を準用する。

(成果等)

- 第338条 成果等は、次の各号のとおりとする。
 - 一 基盤地図情報又は基盤地図情報を含む数値地形図データ
 - 二品質評価表
 - 三、メタデータ
 - 四 その他の資料

第4編 応用測量 第1章 通則 第1節 要旨

(要旨)

- 第339条 本編は、応用測量の作業方法等を定める。
- 2 「応用測量」とは、道路、河川、公園等の計画、調査、実施設計、用地取得、管理等に用いられる測量をいう。 (応用測量の区分)
- 第340条 応用測量は、目的によって次のとおり区分するものとする。
 - 一 路線測量
 - 二河川測量
 - 三 用地測量
 - 四 その他の応用測量
- 2 応用測量は、建設事業に付随する測量ごとに、必要に応じて路線測量、河川測量及び用地測量並びにその他の 測量を行うものとする。

(使用する成果)

- 第341条 応用測量は、基本測量成果に加え、基準点測量、水準測量、地形測量及び写真測量の成果を使用して 行うものとする。ただし、基準点測量成果等が必要な場合には、当該測量を実施し、必要な成果を取得して行う ものとする。
- 2 前項の規定により基準点測量を実施する場合は、第2編第2章の規定を準用する。
- 3 第1項の規定により水準測量を実施する場合は、第2編第3章の規定を準用する。
- 4 第1項の規定により地形測量及び写真測量を実施する場合は、第3編の規定を準用する。 (機器)
- 第342条 観測に使用する主要な機器は、次表に掲げるもの、又はこれらと同等以上のものを標準とする。

機器	性能	摘 要
3級トータルステーション		セオドライト及び光波測距儀を含む
1級GPS測量機		
2級GPS測量機	別表1による	
3級レベル	7750 1 1 - 00	
2級標尺		
水準測量作業用電卓		
鋼巻尺	JIS 1級	
ガラス繊維製巻尺	JIS 1種 1級	
箱尺		目盛が明瞭で、接合が正確であること
立。 北海水河水	測深精度± (3cm+水深×1/1000)	
音響測深機	以上	
レッド		1 kg (標準)
ロッド		2 m (標準)継ぎたし可能
ワイヤーロープ	ϕ 4 mm	

(機器の点検及び調整)

- 第343条 観測に使用する機器の点検及び調整については、第36条及び第63条の規定を準用する。 (計算結果の表示単位)
- 第344条 座標値等の計算結果の表示単位等は、次表を標準とする。ただし、用地測量においては第405条第 6項の規定を適用する。

区分	方向角	距離	標高	座標値
単位	秒	m	m	m
位	1	0.001	0.001	0.001

- 2 計算を計算機で行う場合は、前項に規定する位以上の計算精度を確保し、計算結果は、前項に規定する位の次の位において四捨五入するものとする。
- 3 RTK-GPS法又はネットワーク型RTK-GPS法による標高は、国土地理院が提供するジオイドモデルによりジオイド高を補正して求めるものとする。

(標杭の材質、寸法等)

第345条 使用する標杭の材質、寸法等は、次表を標準とする。

名 称	材質	杭の表示色	寸法(単位cm)
, , , , ,			
役 杭	木	青	$9 \times 9 \times 75$
	プラスチック	青	$9 \times 9 \times 70$
I P 杭	木・プラスチック	青	$9 \times 9 \times 90$
中 心 杭	木	赤	$6 \times 6 \times 60$
	プラスチック	赤	$7 \times 7 \times 60$
引照点 杭	木	白	$9 \times 9 \times 75$
	プラスチック	白	$9\times9\times70$
仮BM 杭	木	プラスチック杭の場	$9 \times 9 \times 75$
	プラスチック	合は黒色又は灰色	$9\times9\times70$
縦断変化点杭	木	赤	$6 \times 6 \times 60$
	プラスチック	赤	$7 \times 7 \times 60$
見通杭	木・プラスチック	白	$4.5 \times 4.5 \times 45$
用地幅杭	木	黄	$6 \times 6 \times 60$
	プラスチック	黄	$7 \times 7 \times 60$
距 離 標	コンクリート		$12 \times 12 \times 90$
	プラスチック		$9 \times 9 \times 90$
水準基標	コンクリート		$9\times9\times70$
	プラスチック		$9\times9\times70$
水際杭	木	白	$4.5 \times 4.5 \times 90$
	プラスチック	白	$4.5 \times 4.5 \times 70$
復 元 杭	木		$4.5 \times 4.5 \times 45$
境界杭	木・プラスチック	黄	$4.5 \times 4.5 \times 45$
補助基準点杭	木	プラスチック杭の場	$6 \times 6 \times 60$
	プラスチック	合は黒色又は灰色	$7 \times 7 \times 60$
用地境界仮杭	木・プラスチック	赤	$4.5 \times 4.5 \times 45$
用地境界杭	コンクリート	赤	$12\times12\times90$
	プラスチック	赤	$9\times9\times90$
保 護 杭	木	本杭と同色	$6 \times 6 \times 60$
	プラスチック		$7 \times 7 \times 60$

- 2 前項のほか形状、品質等は、JIS 規格を標準とする。
- 3 標杭を設置する位置の状況により、金属標、標識プレート、十字鋲等を使用することができる。
- 4 標杭には、必要に応じ固有番号等を記録した I C タグを取り付けることができる。

第2節 製品仕様書の記載事項

(製品仕様書)

第346条 製品仕様書は、当該応用測量の概覧、適用範囲、データ製品識別、データの内容及び構造、参照系、 データ品質、データ品質評価手順、データ製品配布、メタデータ等について体系的に記載するものとする。

第2章 路線測量

第1節 要旨

(要旨)

- 第347条 「路線測量」とは、線状築造物建設のための調査、計画、実施設計等に用いられる測量をいう。
- 2 「線状築造物」とは、道路、水路等幅に比べて延長の長い構造物をいう。

(路線測量の細分)

- 第348条 路線測量は、次に掲げる測量等に細分するものとする。
 - 一 作業計画
 - 二 線形決定
 - 三中心線測量
 - 四 仮BM設置測量
 - 五 縦断測量
 - 六 横断測量
 - 七詳細測量
 - 八 用地幅杭設置測量

第2節 作業計画

(要旨)

第349条 作業計画は、第11条の規定によるほか、路線測量に必要な状況を把握し、路線測量の細分ごとに作成するものとする。

第3節 線形決定

(要旨)

第350条 「線形決定」とは、路線選定の結果に基づき、地形図上の交点(以下「IP」という。)の位置を座標として定め、線形図データファイルを作成する作業をいう。

(方法)

- 第351条 線形決定は、地図情報レベル1000以下の地形図上において、設計条件及び現地の状況を勘案して 行うものとする。
- 2 設計条件となる点(以下「条件点」という。)の座標値は、近傍の4級基準点以上の基準点に基づき、放射法等により求めるものとする。
- 3 条件点の観測は、測量地域の地形、地物等の状況を考慮しTS等又はRTK-GPS法若しくはネットワーク 型RTK-GPS法により行うことができる。
 - TS等による場合は、次表を標準とする。

区 分 水平角観測		鉛直角観測	距離測定
方 法	1 対回	0.5対 回	2回測定
較差の許容範囲	40"	_	5 mm

二 RTK-GPS法又はネットワーク型RTK-GPS法による場合は、次表を標準とする。ただし、セット 間較差は、基線ベクトル成分X、Yの比較によることができる。

使用衛星数	観測回数	データ取得間隔	セット間	較差の許容範囲	適用
5衛星以上	FIX 解を得てから 10 エポック(連続)以	1秒	ΔN	20mm	
	上を2セット		ΔE	20mm	

- 三 前号において1セット目の観測終了後、点検のための再初期化を行い2セット目の観測を行うものとする。 ただし、2セット目の観測結果は点検値とする。
- 四 RTK-GPS法又はネットワーク型RTK-GPS法による点検測量の観測回数は1セットとする。
- 4 ネットワーク型RTK-GPS法による観測は、基準点から条件点までの基線ベクトルを求める間接観測法によるほか、電子基準点を基礎とする単点観測法によることができる。
- 5 単点観測法による場合は、作業地域を囲む既知点において観測し、必要に応じて整合を図るものとし、整合の 方法は、次のとおりとする。
 - 整合の基礎となる既知点は、作業地域の周辺を囲むように配置するものとする。
 - 二 前号の既知点数は、3点以上を標準とする。
 - 三 水平の整合処理は、座標補正として次により行うものとする。
 - イ 座標補正は、平面直角座標系上で行うことを標準とする。
 - ロ 座標補正に用いる既知点数は、3点以上を標準とする。
 - ハ 座標補正の補正手法は適切な方法を採用するものとする。
 - 四 高さの整合処理は、標高補正として次により行うものとする。
 - イ 標高補正は、標高を用いることを標準とする。
 - ロ 標高補正に用いる既知点数は、3点以上を標準とする。
 - ハ 標高補正の補正手法は適切な方法を採用するものとする。
 - 五 座標補正の点検は、座標補正を行った点と作業地域に隣接する点との距離を、座標補正前後で求め、その較 差により行うものとする。なお、較差の許容範囲は、次表を標準とする。

点検距離	許容範囲
500m以上	1/10,000
500m 以内	50mm

- 6 線形図データファイルは、計算等により求めた主要点及び中心点の座標値を用いて作成する。
- 7 点検測量は、条件点間の距離を測定し、座標差から求めた距離との比較により行う。
- 8 前項において条件点間の距離が直接測定できない場合は、その条件点の座標値の決定に用いた既知点以外の既知点から別に求めた座標値の較差又はTSの対辺測定機能を用いて条件点間距離を測定し、その較差により点検する。ただし、座標値により点検する場合の点間距離Sは、採用値及び点検値のうち短い距離を使用するものとする。
- 9 前2項の較差の許容範囲は次表を標準とする。

距離区分	平 地	山 地	摘 要	
30m 未満	10 mm	15 mm	│ - S は点間距離の計算値	
30m 以上	S/3,000	S/2,000] 以《水水间定佛》》引茅恒	

10 精度管理の結果は、精度管理表にとりまとめるものとする。

(IPの設置)

- 第352条 現地に直接 I Pを設置する必要がある場合は、次により行うものとする。
 - 一 線形決定により定められた座標値を持つ I Pは、近傍の 4 級基準点以上の基準点に基づき、放射法等によ

- り設置するものとする。
- 二 前号によらない I Pは、周囲の状況を勘案して、現地に直接設置するものとする。この場合において、 I Pの座標値は、近傍の4級基準点以上の基準点に基づき放射法等により求めるものとする。ただし、直接視通がとれない場合は節点を設けることができる。
- 三 IPには、標杭を設置する。
- 2 I Pの観測は、前条第3項から第5項までの規定を準用する。
- 3 点検測量は、IP点間の距離を測定し、座標差から求めた距離との比較により行う。
- 4 前項において I P点間の距離が直接測定できない場合は、前条第8項の規定を準用する。
- 5 前2項の較差の許容範囲は、次表を標準とする。

距離区分	平	地	Щ	地	摘	要
30m未満	10 mm		15 mm		Sは点間距離の計算値	
30m以上	S/3	3,000	S/	2,000	りていた。同時時間	ツ川昇旭

6 精度管理の結果は、精度管理表にとりまとめるものとする。

第4節 中心線測量

(要旨)

第353条 「中心線測量」とは、主要点及び中心点を現地に設置し、線形地形図データファイルを作成する作業をいう。

(方法)

- 第354条 主要点の設置は、近傍の4級基準点以上の基準点等に基づき、放射法等により行うものとする。ただし、直接視通がとれない場合は節点を設けることができる。
- 2 中心点の設置は、近傍の4級基準点以上の基準点、IP及び主要点に基づき、放射法等により行うものとする。 ただし、直接視通がとれない場合は節点を設けることができる。
- 3 中心点を設置する間隔は、次表を標準とする。

ź	锺 別	間隔
道路	計画調査	100m又は50m
	実施 設計	20m
河川	計画調査	100m又は50m
[[H]]]]	実施 設計	20m又は50m
海岸	実施 設計	20m又は50m

- 4 中心点の観測は、第351条第3項から第5項までの規定を準用する。
- 5 線形地形図データファイルは、地形図データに主要点及び中心点の座標値を用いて作成する。
- 6 点検測量は、隣接する中心点等の点間距離を測定し、座標差から求めた距離との比較により行う。
- 7 前項において中心点間等の距離が、直接測定ができない場合は、第351条第8項の規定を準用する。
- 8 前2項の較差の許容範囲は、次表を標準とする。

距離 区分	平 地	山 地	摘 要
20m未満	10 mm	20 mm	Sは点間距離の計算値
20m以上	S/2,000	S/1,000	2 (よぶ 町昨年2月 早

9 計画機関が指示する縦断変化点の設置は、中心点の設置を準用する。

- 10 精度管理の結果は、精度管理表にとりまとめるものとする。 (標杭の設置)
- 第355条 主要点には役杭を、中心点には中心杭を設置する。
- 2 役杭には、必要に応じて引照点杭又は保護杭を設置する。
- 3 役杭及び中心杭には、識別のための名称等を記入する。
- 4 引照点杭を設置した場合は、引照点図を作成する。

第5節 仮BM設置測量

(要旨)

第356条 「仮BM設置測量」とは、縦断測量及び横断測量に必要な水準点(以下「仮BM」という。)を現地 に設置し、標高を定める作業をいう。ただし、河川等で距離標がある場合は、これを仮BMとして使用すること ができる。

(方法)

- 第357条 仮BM設置測量は、平地においては3級水準測量により行い、山地においては4級水準測量により行うものとする。
- 2 仮BMを設置する間隔は、0.5キロメートルを標準とする。
- 3 精度管理の結果は、精度管理表にとりまとめるものとする。 (標杭の設置)
- 第358条 仮BMには、標杭を設置するものとする。ただし、堅固な構造物等を利用するときは、この限りでない。

第6節 縦断測量

(要旨)

- 第359 「縦断測量」とは、中心杭等の標高を定め、縦断面図データファイルを作成する作業をいう。
- 第360条 縦断測量は、中心杭高及び中心点並びに中心線上の地形変化点(以下「縦断変化点」という。)の地盤高及び中心線上の主要な構造物の標高を仮BM又はこれと同等以上の水準点に基づき、平地においては4級水準測量、山地においては簡易水準測量により行うものとする。なお、主要な構造物及び縦断変化点の位置は、中心点等からの距離を測定して定めるものとする。
- 2 前項の規定にかかわらず、仮BM又はターニングポイントの中間にある点の観測は、中間視によるものとする。
- 3 縦断変化点には、標杭を設置する。
- 4 観測の基準とする点は、仮BMとし、観測の路線は、仮BMから出発し、他の仮BMに結合する。
- 5 観測は、往路においては中心杭高、中心杭、縦断変化点杭の地盤高及び中心線上の主要な構造物の標高について行い、復路においては中心杭高について行うものとする。
- 6 縦断変化点及び主要な構造物の位置は、中心点からの距離を測定して定める。
- 7 地形、地物等の状況により、直接水準測量に代えて間接水準測量によることができる。
- 8 間接水準測量は、TSを用いた単観測昇降式による往復観測とする。なお、その閉合差の許容範囲は、第69 条第1項第二号に規定する表に定める簡易水準測量の閉合差を準用する。
- 9 縦断面図データファイルは、縦断測量の結果に基づいて作成する。
- 10 縦断面図データファイルを図紙に出力する場合は、縦断面図の距離を表す横の縮尺(以下「横の縮尺」という。) は線形地形図の縮尺と同一とし、高さを表す縦の縮尺(以下「縦の縮尺」という。) は、線形地形図の縮

尺の5倍から10倍までを標準とする。

11 精度管理の結果は、精度管理表にとりまとめるものとする。

第7節 横断測量

(要旨)

第361条 「横断測量」とは、中心杭等を基準にして地形の変化点等の距離及び地盤高を定め、横断面図データファイルを作成する作業をいう。

(方法)

- 第362条 横断測量は、中心杭等を基準にして、中心点における中心線の接線に対して直角方向の線上にある地 形の変化点及び地物について、中心点からの距離及び地盤高を測定するものとする。
- 2 横断方向には、原則として、見通杭を設置するものとする。
- 3 測量の基準とする点は、中心杭及び計画機関が指示する縦断変化点杭とする。
- 4 横断測量における地盤高の測定は、地形、地物等の状況により直接水準測量又は間接水準測量により行うものとする。
- 5 間接水準測量は、測量地域の地形、地物等の状況を考慮しTS又はRTK-GPS法若しくはネットワーク型RTK-GPS法により行うことができる。
 - 一 TSによる場合は、第360条第8項を準用する。
 - 二 RTK-GPS法又はネットワーク型RTK-GPS法による場合は、次表を標準とする。

使用衛星数	観測回数	データ取得間隔
5衛星以上	FIX 解を得てから 10 エポック(連続)以上を 1 セット	1秒

三 前号の観測開始時には点検のための再初期化を行う。点検の方法は、既知点等の成果値と点検する場合は、 1セットを観測し、観測位置が明瞭な標杭等の場合は、2セットを観測し比較により行うものとする。観測 の途中で再初期化を行う場合も同様とし、較差の許容範囲は次表を標準とする。なお、採用値は、2セット 目の観測値とする。

項	目	許容值	節 囲		摘	要	
セット間	較差	∠N,∠E	20 mm	・既知点のX、	てかけ画	11 (畑古)	しい歌と可
ヒット回	蚁左	ΔU	30 mm	$\mathcal{L}_{\mathcal{A}}$	Y产宗、	刀 (除向)	これ教も引

- 6 RTK-GPS法又はネットワーク型RTK-GPS法による観測において、横断方向の見通し杭の設置は行わないものとし、横断方向を直接決定することができる。ただし、点検測量のための末端見通杭を設置する。
- 7 水部における横断測量は、前項の規定にかかわらず、第3章第7節の規定を準用する。
- 8 横断面図データファイルは、横断測量の結果に基づき作成する。
- 9 点検測量は、点検測量率によって選択された横断面について、再度横断測量を実施し、その結果に基づいて描画した横断面図を、先に描画した横断面図の中心点及び末端見通杭を固定して重ね合わせ、横断形状を比較することにより行うものとする。また、中心杭と末端見通杭の距離及び標高の測定値と点検測量値との比較を行うものとし、較差の許容範囲は、次表を標準とする。

区分	平 地	山 地	適用
距離	L/500	L/300	Lは中心杭等と末端見通杭の測定
標高	$2 \text{ cm} + 5 \text{ cm} \sqrt{\text{L}/100}$	$5 \text{ cm} + 15 \text{ cm} \sqrt{\text{L}/100}$	距離 (m 単位)

10 横断面図データファイルを図紙に出力する場合は、横断面図の縮尺は縦断面図の縦の縮尺と同一のものを標

準とする。

11 精度管理の結果は、精度管理表にとりまとめるものとする。

第8節 詳細測量

(要旨)

第363条 「詳細測量」とは、主要な構造物の設計に必要な詳細平面図データファイル、縦断面図データファイル及び横断面図データファイルを作成する作業をいう。

(方法)

- 第364条 詳細平面図データファイルの作成は、第3編第2章の規定を準用する。
- 2 縦断面図データファイルの作成は、縦断測量により、横断面図データファイルの作成は、横断測量により行うものとする。
- 3 横断測量の方法は、前節の規定を準用し、観測は平地においては4級水準測量、山地においては簡易水準測量 又は前節の間接水準測量に準じて行うものとする。
- 4 詳細平面図データの地図情報レベルは250を標準とする。
- 5 詳細平面図データファイルを図紙に出力する場合は、縦断面図の横の縮尺は詳細平面図の縮尺と同一とし、縦 の縮尺は100分の1を標準とする。また、横断図面の縮尺は縦断面図の縦の縮尺に合わせることを標準とする。
- 6 精度管理の結果は、精度管理表にとりまとめるものとする。

第9節 用地幅杭設置測量

(要旨)

第365条 「用地幅杭設置測量」とは、取得等に係る用地の範囲を示すため所定の位置に用地幅杭を設置する作業をいう。

(方法)

- 第366条 用地幅杭設置測量は、中心点等から中心線に対して直角方向の用地幅杭点座標値を計算し、それに基づいて、近傍の4級基準点以上の基準点、主要点、中心点等から放射法等により用地幅杭を設置して行うものとする。設置した標杭には、測点番号、中心杭等からの距離等を表示する。
- 2 計画機関の指示により、前項に規定する以外の位置に用地幅杭点を設置する場合は、その点の座標値を計算し、 放射法等により行うものとする。
- 3 用地幅杭設置測量の観測は、第351条第3項から第5項までの規定を準用する。
- 4 用地幅杭点間の距離は、用地幅杭点座標値に基づき、計算により求める。
- 5 用地幅杭点及び中心点の位置を示す図を必要とする場合には、杭打図として作成する。 (用地幅杭点間測量)
- 第367条 用地幅杭点間測量は、TS等により隣接する用地幅杭点間全辺について距離を現地で測定するとともに、前条の規定に基づいて計算した用地幅杭点間距離と比較を行うものとする。なお、較差の許容範囲は、次表を標準とする。

距離 区分	平 地	山 地	摘要
20m 未満	10 mm	20 mm	Sは点間距離の計算値
20m 以上	S/2,000	S/1,000	

- 2 前項において用地幅杭間の距離が直接測定できない場合は、第351条第8項の規定を準用する。
- 3 用地幅杭設置測量の結果は、精度管理表にとりまとめるものとする。

第10節 品質評価

(品質評価)

第368条 路線測量成果の品質評価は、第44条の規定を準用する。

第11節 成果等の整理

(メタデータの作成)

第369条 路線測量成果のメタデータの作成は、第45条の規定を準用する。

(成果等)

第370条 路線測量の成果等は、次表を標準とする。

		該当する測量の種類									
成果等の整理	線形 決定	条件点 の観測	I P 設置 測量	中心線測量	仮 BM 設 置 測 量	縦断 測量	横断測量	詳細測量	用地幅 杭設置 測 量	摘	要
観測手簿		0			0	0	0	0			
計算簿	0	0	0	0					0		
成果表		0			0	0		0			
線形図データファイ ル	0										
線形地形図データファイル				0							
縦横断面図データフ アイル						0	0	0			
詳細平面図データファイル								0			
引照点図				0							·
品質評価表					0	0		0	0		
メタデータ					0	0		0	0		

2 前項の表に定めるもののほか、別に作成した資料がある場合には、その他の資料として整理するものとする。 また、観測手簿と成果表を併用する様式を使用することができる。

第3章 河川測量

第1節 要旨

(要旨)

- 第371条 「河川測量」とは、河川、海岸等の調査及び河川の維持管理等に用いる測量をいう。
- 2 河川、水路等の新設及び改修に係る測量は、前章の規定を準用する。

(河川測量の細分)

- 第372条 河川測量は、次に掲げる測量等に細分するものとする。
 - 一 作業計画
 - 二 距離標設置測量
 - 三 水準基標測量
 - 四 定期縦断測量
 - 五 定期横断測量
 - 六 深浅測量
 - 七 法線測量
 - 八海浜測量及び汀線測量

第2節 作業計画

(要旨)

第373条 作業計画は、第11条の規定によるほか、測量を実施する河川、海岸等の状況を把握し、河川測量の 細分ごとに作成するものとする。

第3節 距離標設置測量

(要旨)

第374条 「距離標設置測量」とは、河心線の接線に対して直角方向の両岸の堤防法肩又は法面等に距離標を設置する作業をいう。

(方法)

- 第375条 距離標設置測量は、あらかじめ地形図上で位置を選定し、その座標値に基づいて、近傍の3級基準 点等から放射法等により設置するものとする。
- 2 距離標設置間隔は、河川の河口又は幹川への合流点に設けた起点から、河心に沿って200メートルを標準とする。
- 3 距離標設置測量の観測は、TS等による場合は第37条及び第38条の表に定める3級基準点測量により行い、 単点観測法による場合は第362条第5項第2号及び第3号の規定を準用する。
- 4 単点観測法による場合においては、距離標から仮想点までの距離を3キロメートル以内とする。
- 5 精度管理の結果は、精度管理表にとりまとめるものとする。
- 6 距離標の位置を示すため、点の記を作成する。

第4節 水準基標測量

(要旨)

- 第376条 「水準基標測量」とは、定期縦断測量の基準となる水準基標の標高を定める作業をいう。 (方法)
- 第377条 水準基標測量は、2級水準測量により行うものとする。
- 2 水準基標は、水位標に近接した位置に設置するものとし、設置間隔は、5キロメートルから20キロメートル までを標準とする。
- 3 精度管理の結果は、精度管理表にとりまとめるものとする。
- 4 水準基標の位置を示すため、点の記を作成する。

第5節 定期縦断測量

(要旨)

第378条 「定期縦断測量」とは、定期的に距離標等の縦断測量を実施して縦断面図データファイルを作成する 作業をいう。

(方法)

- 第379条 定期縦断測量は、左右両岸の距離標の標高並びに堤防の変化点の地盤及び主要な構造物について、距離標からの距離及び標高を測定するものとする。
- 2 定期総断測量は、原則として、観測の基準とする点は水準基標とし、観測の路線は、水準基標から出発し、他 の水準基標に結合するものとする。
- 3 定期総断測量は、平地においては3級水準測量により行い、山地においては4級水準測量により行うものとする。ただし、地形、地物等の状況によっては、4級水準測量に代えて間接水準測量により行うことができるものとし、その場合は第360条第8項の規定を準用する。

- 4 縦断面図データファイルは、定期縦断測量の結果に基づいて作成する。
- 5 縦断面図データには、測点、単距離、追加距離、計画河床高、計画高水敷高、計画高水位、計画堤防高、最低河床高、左岸堤防高、右岸堤防高、水準基標、水位標、各種構造物等の名称、位置、標高等のデータを格納する。
- 6 縦断面図データを図紙に出力する場合は、横の縮尺は1,000分の1から100,000分の1まで、縦の縮尺は100分の1から200分の1までを標準とする。
- 7 精度管理の結果は、精度管理表にとりまとめるものとする。

第6節 定期横断測量

(要旨)

第380条 「定期横断測量」とは、定期的に左右距離標の視通線上の横断測量を実施して横断面図データファイルを作成する作業をいう。

(方法)

- 第381条 定期横断測量は、左右距離標の視通線上の地形の変化点等について、距離標からの距離及び標高を測定するものとする。
- 2 定期横断測量は、水際杭を境にして、陸部と水部に分け、陸部については第2章第7節の規定を準用し、水部 については次節の規定を準用する。
- 3 陸部の測量範囲は、次表を標準とする。

測 量 名	測量範囲
定期横断測量	堤内 20~50m

- 4 横断面図データファイルは、定期横断測量の結果に基づいて作成する。
- 5 横断面図データには、距離標及び水際杭の位置データを格納する。
- 6 横断面図データを図紙に出力する場合は、横の縮尺は100分の1から10,000分の1まで、縦の縮尺は100分の1から200分の1までを標準とする。

第7節 深浅測量

(要旨)

第382条 「深浅測量」とは、河川、貯水池、湖沼又は海岸において、水底部の地形を明らかにするため、水深、 測深位置、船位、水位及び潮位を測定し、横断面図データファイルを作成する作業をいう。

(方法)

- 第383条 水深の測定は、音響測深機を用いて行うものとする。ただし、水深が浅い場合は、ロッド又はレッドを用い直接測定により行うものとする。
- 2 測深位置、船位の測定は、ワイヤーロープ、TS等、GPS測量機のいずれかを用いて行うものとし、測点間 隔は次表を標準とする。

使用機器	測点間隔	備考
ワイヤーロープ	5 m	
TS等	10m ∼ 100m	1 m間隔の等深線図が描ける程度
GPS 測量機	10m ∼ 100m	1 m間隔の等深線図が描ける程度

- 3 ワイヤーロープによる測定は、測線にワイヤーロープを設置し水深を測定する。
- 4 TS等による観測は、TS等を用い測量船を測線上に誘導し水深を測定する。
- 5 RTK-GPS法又はネットワーク型RTK-GPS法による観測は、次表を標準とする。

使用衛星数	観 測 回 数	データ取得間隔
-------	---------	---------

5衛星以上	FIX 解を得てから1エポック以上	1秒
0 南生公工	1111年でいてい ウェーベンンの工	1 1/2

- 6 音響測深機による測定では、その機器に定められた深度校正を毎日1回以上行うものとし、深度校正を行う場所は当日の測深水域又はその付近で行うものとする。
- 7 水深測定は、指定されたピッチ位置において2回行い、その平均値を採用する。ただし、河口部等が広大な水 域等において測定を2回行うことが困難な場合はこの限りでない。
- 8 アナログ測深記録では、一定時間毎に記録紙に測位マークを入れ、デジタル測深記録では、時刻をGPSの観測時刻と合わせ測深位置を決定する。
- 9 水位及び潮位の測定は、水位標、検潮所若しくは仮水位標による観測又は直接測定により行うものとする。
- 10 横断面図データファイルは、深浅測量の結果に基づいて作成する。
- 11 横断面図データには、水際杭の位置データを格納する。
- 12 横断面図データを図紙に出力する場合は、横の縮尺は100分の1から10,000分の1まで、縦の縮尺は100分の1から200分の1までを標準とする。

第8節 法線測量

(要旨)

第384条 「法線測量」とは、計画資料に基づき、河川又は海岸において、築造物の新設又は改修等を行う場合 に現地の法線上に杭を設置し線形図データファイルを作成する作業をいう。

(方法)

- 第385条 法線測量は、第2章第4節の規定を準用する。
- 2 精度管理の結果は、精度管理表にとりまとめるものとする。

第9節 海浜測量及び江線測量

(要旨)

- 第386条 「海浜測量」とは、前浜と後浜(以下「海浜」という。)を含む範囲の等高・等深線図データファイルを作成する作業をいう。
- 2 「汀線測量」とは、最低水面と海浜との交線(以下「汀線」という。)を定め、汀線図データファイルを作成 する作業をいう。

(方法)

- 第387条 海浜測量は、海岸線に沿って陸部に基準線を設けて、適切な間隔に測点を設置し、測点ごとに基準線に対し直角の方向に横断測量を実施するものとする。ただし、後浜の地形が複雑な場合は、後浜について第3編地形測量及び写真測量により行うことができる。
- 2 基準線の測量は、第2章第4節の規定を準用する。
- 3 最低水面は、原則として海上保安庁が公示する最低水面の高さから求める。
- 4 等高・等深線地図データファイルは、横断測量等の結果に基づいて作成する。

- 7 精度管理の結果は、精度管理表にとりまとめるものとする。

第10節 品質評価

(品質評価)

第388条 河川測量成果の品質評価は、第44条の規定を準用する。

第11節 成果等の整理

(メタデータの作成)

第389条 河川測量成果のメタデータの作成は、第45条の規定を準用する。

(成果等)

第390条 河川測量の成果等は、次表を標準とする。

			該						
成果等の整理	距離標 設 置 測 量	水準 基標 測量	定期 縦断 測量	定期 横断 測量	深浅 測量	法線 測量	海浜測量	汀線 測量	摘要
観測手簿	0	0	0	0	0	0	0	0	
記録紙					0				
計算簿	0	0				0	0	0	
成果表	0	0	0						
縦断面図データフ アイル			0						
横断面図データフ アイル				0	0				
線形図データファ イル						0			
等高・等深線図デ ータファイル							0		
汀線図データファ イル								0	
点の記	0	0							
品質評価表	0	0	0			0	0	0	
メタデータ	0	0	0			0	0	0	

2 前項の表に定めるもののほか、別に作成した資料がある場合には、その他の資料として整理するものとする。 また、観測手簿と成果表を併用する様式を使用することができる。

第4章 用地測量

第1節 要旨

(要旨)

第391条 「用地測量」とは、土地及び境界等について調査し、用地取得等に必要な資料及び図面を作成する作業をいう。

(用地測量の細分)

- 第392条 用地測量は、次に掲げる測量等に細分するものとする。
 - 一 作業計画
 - 二 資料調査
 - 三 復元測量
 - 四 境界確認
 - 五 境界測量
 - 六 境界点間測量
 - 七面積計算
 - 八 用地実測図データファイルの作成

九 用地平面図データファイルの作成

第2節 作業計画

(要旨)

第393条 用地測量の作業計画は、第11条の規定によるほか、測量を実施する区域の地形、土地の利用状況、 植生の状況等を把握し、用地測量の細分ごとに作成するものとする。

第3節 資料調査

(要旨)

第394条 「資料調査」とは、土地の取得等に係る土地について、用地測量に必要な資料等を整理及び作成する 作業をいう。

(方法)

第395条 資料調査は、作業計画に基づき、法務局等に備える地図、地図に準ずる図面、地積測量図等公共団体 に備える地図等(以下「公図等」という。)の転写並びに土地及び建物の登記記録の調査及び権利者確認調査に 区分して行うものとする。

(公図等の転写)

- 第396条 公図等の転写は、管轄法務局等に備える公図等に基づき公図等転写図を作成する。
- 2 調査する区域が広範な場合は、公図等転写連続図を作成する。

(土地の登記記録の調査)

第397条 土地の登記記録の調査は、管轄法務局等に備えられた土地の登記記録について登記事項証明書等に基づき、土地調査表を作成し行うものとする。

(建物の登記記録の調査)

第398条 建物の登記記録の調査は、管轄法務局等に備えられた建物の登記記録について登記事項証明書等に基づき、建物の登記記録等調査表を作成し行うものとする。

(権利者確認調査)

第399条 権利者確認調査は、計画機関から貸与された資料等を基に権利者調査表を作成し行うものとする。 第4節 復元測量

(要旨)

第400条 「復元測量」とは、境界確認に先立ち、地積測量図等に基づき境界杭の位置を確認し、亡失等がある場合は復元するべき位置に仮杭(以下「復元杭」という。)を設置する作業をいう。

(方法)

- 第401条 収集した地積測量図等の精度、測量年度等を確認し、その結果に基づき境界杭を調査し、亡失等の異常の有無を確認するものとする。
- 2 復元測量は、計画機関が境界確認に必要があると認める境界杭について行うものとする。
- 3 現地作業の着手前には、関係権利者に立ち入りについての日程等を通知する。
- 4 境界杭に亡失、異常等がある場合は、復元杭を設置する。
- 5 前項の規定により復元杭の設置等を行う場合は、関係権利者への事前説明を実施するものとする。この場合、 原則として関係権利者による立会いは行わないものとする。
- 6 復元の方法は、直接復元法等により行うものとする。
- 7 収集した資料に基づき復元した現地と相違する場合は、復元杭を設置せず原因を調査し計画機関に報告し適切な措置を講ずるものとする。

第5節 境界確認

(要旨)

第402条 「境界確認」とは、現地において一筆ごとに土地の境界(以下「境界点」という。)を確認する作業をいう。

(方法)

- 第403条 境界確認は、前節の復元測量の結果、公図等転写図、土地調査表等に基づき、現地において関係権利 者立会いの上、境界点を確認し、標杭を設置することにより行うものとする。
- 2 境界確認を行う範囲は、次のとおりとする。
 - 一 一筆を範囲とする画地
 - 二 一筆の土地であっても、所有権以外の権利が設定されている場合は、その権利ごとの画地
 - 三 一筆の土地であっても、その一部が異なった現況地目となっている場合は、現況の地目ごとの画地
 - 四 一画地にあって、土地に付属するあぜ、溝、その他これらに類するものが存するときは、一画地に含むものとする。ただし、一部ががけ地等で通常の用途に供することができないと認められるときは、その部分を区分した画地
- 3 境界確認に当たっては、各関係権利者に対して、立会いを求める日を定め、事前に通知する。
- 4 境界点に、既設の標識が設置されている場合は、関係権利者の同意を得てそれを境界点とすることができる。
- 5 境界確認が完了したときは、土地境界立会確認書を作成し、関係権利者全員に確認したことの署名押印を求める。
- 6 復元杭の位置について地権者の同意が得られた場合は、復元杭の取り扱いは計画機関の指示によるものとする。 第6節 境界測量

(要旨)

第404条 「境界測量」とは、現地において境界点を測定し、その座標値を求める作業をいう。

(方法)

- 第405条 境界測量は、近傍の4級基準点以上の基準点に基づき、放射法により行うものとする。ただし、やむを得ない場合は、補助基準点を設置し、それに基づいて行うことができる。
- 2 前項の観測は、測量地域の地形、地物等の状況を考慮しTS等又はRTK-GPS法若しくはネットワーク型 RTK-GPS法によることができる。
 - TS等による観測は、次表を標準とする。

区分	水平角観測	鉛直各観測	距離測定
方 法	0.5 対回	0.5 対回	2回測定
較差の許容範囲	_	_	5 mm

二 RTK-GPS法又はネットワーク型RTK-GPS法による場合は、次表を標準とする。ただし、セット間較差は、基線ベクトル成分X、Yの比較によることができる。

使用衛星数	観測回数	データ取得間隔	セット間	摘	要	
5衛星以上	FIX 解を得てから 10 エポック (連続) 以上	1秒	ΔN	20 mm		
- 111	を2セット	1	∠E	20 mm		

三 前号において1セット目の観測終了後、再初期化を行い2セット目の観測を行う。なお、境界点の座標値は、2セットの観測から求めた平均値とする。

3 補助基準点は、基準点から辺長100メートル以内、節点は1点以内の開放多角測量により設置するものとする。なお、観測の区分等は、次表を標準とする。

区分	\	水平角観測	鉛直角観測	距離測定	
方 法	;	2 対回(0°,90°)	1対回	2回測定	
較差の許容範囲	倍角差	60 "	60 "	5 mm	
X左/計台型出	観測差	40 "	00		

- 4 第2項の結果に基づき、計算により境界点の座標値、境界点間の距離及び方向角を求めるものとする。
- 5 計算を計算機により行う場合は、次項に規定する位以上の計算精度を確保し、座標値及び方向角は、次項に規定する位の次の位において四捨五入するものとし、距離及び面積は、次項に規定する位の次の位以下を切り捨てるものとする。
- 6 座標値等の計算における結果の表示単位等は、次表を標準とする。

区分	方向角	距離	座標値	面積	
単位	秒	秒 m m		m²	
位	1	0.001	0.001	0. 000001	

- 7 ネットワーク型RTK-GPS法による観測は、基準点から境界点までの基線ベクトルを求める間接観測法によるほか、電子基準点を基礎とする単点観測法によることができる。
- 8 単点観測法による場合は、作業地域を囲む既知点において観測し、必要に応じて整合を図るものとし、整合の 方法は、第351条第5項の規定を準用する。
- 9 ネットワーク型RTK-GPS法による場合は、既知点となった電子基準点の名称等を記録する。 (用地境界仮杭設置)
- 第406条 「用地境界仮杭設置」とは、用地幅杭の位置以外の境界線上等に、用地境界杭を設置する必要がある場合に、用地境界仮杭を設置する作業をいう。

(方法)

- 第407条 用地境界仮杭設置は、交点計算等で求めた用地境界仮杭の座標値に基づいて、4級基準点以上の基準 点から放射法又は用地幅杭線及び境界線の交点を視通法により行うものとする。
- 2 用地境界仮杭の観測は、第405条第2項、第7項及び第8項の規定を準用する。 (用地境界杭設置)
- 第408条 「用地境界杭設置」とは、用地幅杭又は用地境界仮杭と同位置に用地境界杭を置き換える作業をいう。 第7節 境界点間測量

(要旨)

第409条 「境界点間測量」とは、境界測量等において隣接する境界点間の距離をTS等を用いて測定し精度 を確認する作業をいう。

(方法)

- 第410条 境界点間測量は、次の測量を終了した時点で行うものとする。
 - 一 境界測量
 - 二 用地境界仮杭設置
 - 三 用地境界杭設置
- 2 境界点間測量は、隣接する境界点間又は境界点と用地境界杭を設置した点(以下「用地境界点」という。)と

の距離を全辺について現地で測定し、第405条及び第407条の規定で計算した距離と比較を行うものとする。 なお、較差の許容範囲は、次表を標準とする。

距離区分	平地	山 地	摘要
20m未満	1 0 mm	20 mm	Sは点間距離の計算値
20m以上	S/2, 000	S/1, 000	D は応用此類で活力性

- 3 境界点間の距離が直接測定できない場合は、第351条第8項の規定を準用するものとし、較差の許容範囲は、 前項の表による。
- 4 境界点間測量の結果は、精度管理表にとりまとめるものとする。

第8節 面積計算

(要旨)

第411条 「面積計算」とは、境界測量の成果に基づき、各筆等の取得用地及び残地の面積を算出し面積計算書 を作成する作業をいう。

(方法)

第412条 面積計算は、原則として座標法により行うものとする。

第9節 用地実測図データファイルの作成

(要旨)

第413条 「用地実測図データファイルの作成」とは、第1節から前節までの結果に基づき、用地実測図データ を作成する作業をいう。

(作成)

- 第414条 用地実測図データファイルは、境界点の座標値等を用いて作成する。
- 2 用地実測図データは、次の項目を標準とする。
 - 一 基準点及び官民、所有権、借地、地上権等の境界点の座標値、点名、標杭の種類及び境界線
 - 二面積計算表
 - 三 各筆の地番、不動産番号、地目、土地所有者氏名及び借地人等氏名
 - 四 境界辺長
 - 五 隣接地の地番、不動産番号及び境界の方向線
 - 六 借地境界
 - 七 用地取得線
 - 八 図面の名称、配置、方位、座標線、地図情報レベル、座標系、測量年月日、計画機関名称、作業機関名称及び土地の測量に従事した者の記名
 - 九 市区町村の名称、大字、字の名称又は町、丁の名称及び境界線
 - 十 用地幅杭点及び用地境界点の位置
 - 十一 現況地目
 - 十二 画地及び残地の面積
 - 十三 その他計画機関に指示された事項
- 3 用地実測図データの地図情報レベルは、250を標準とする。
- 4 分類コードは、付録7の公共測量標準図式数値地形図データ取得分類基準を標準とする。
- 5 用地実測図データを図紙に出力する場合の図紙の仕様は、厚さは0.075ミリメートルとし、素材はポリエステルフィルム又はこれと同等以上のものとする。

第10節 用地平面図データファイルの作成

(要旨)

第415条 「用地平面図データファイルの作成」とは、第1節から前節までの結果に基づき、用地平面図データ を作成する作業をいう。

(作成)

- 第416条 用地平面図データファイルは、用地実測図データの境界点の座標値等の必要項目を抽出するとともに、 現地において建物等の主要地物を測定し作成する。
- 2 用地平面図データは、次の項目を標準とする。
 - 一 基準点並びに官民、所有権、借地、地上権等の境界点及び境界線
 - 二 各筆の地番、不動産番号、地目、土地所有者及び借地人等氏名
 - 三 用地幅杭点及び用地境界点の位置並びに用地取得線
 - 四 行政界、市区町村の名称及び大字、字の名称又は町、丁の名称
 - 五 現況地目
 - 六 建物等及び工作物
 - 七 道路名及び水路名
 - 八 図面の名称、配置、方位、座標線、地図情報レベル及び座標系
 - 九 測量年月日、計画機関名称及び作業機関名称
 - 十 その他計画機関に指示された事項
- 3 用地平面図データの地図情報レベルは、250を標準とする。
- 4 分類コードは、付録7の公共測量標準図式数値地形図データ取得分類基準を標準とする。
- 5 用地平面図データを図紙に出力する場合の図紙の仕様は、厚さは0.075ミリメートルとし、素材はポリエステルフィルム又はこれと同等以上のものとする。

第11節 品質評価

(品質評価)

第417条 用地測量成果の品質評価は、第44条の規定を準用する。

第12節 成果等の整理

(メタデータの作成)

第418条 用地測量成果のメタデータの作成は、第45条の規定を準用する。

(武里笠)

第419条 用地測量の成果等は、次表を標準とする。

成果等	該当する測量の種類							I-b
の整理	資料 調査	境界 確認	境界 測量	境界点 間測量	面積 計算	用地実測図データ ファイルの作成	用地平面図データ ファイルの作成	摘要
公図等転写図	0							
公図等転写連続図	0							
土地調査表	0							
建物の登記記 録等調査表	0							

権利者調査表	0							
土地境界立会		0						
確認書)						
観測手簿			0	0				
測量計算簿等			0					
用地実測図デ						\cap		
ータファイル)		
用地平面図デ							\bigcirc	
ータファイル								
面積計算書					0			
品質評価表						0	0	
メタデータ						0	0	

2 前項の表に定めるもののほか、別に作成した資料がある場合には、その他の資料として整理するものとする。 第5章 その他の応用測量

第1節 要 旨

(要旨)

- 第420条 「その他の応用測量」とは、第2章から前章までの適用を受けない主題図データファイルを作成する作業をいう。
- 2 「主題図データファイル」とは、地域に分布する自然及び人文現象を、目的に応じた規則により分類処理し、 必要に応じて現地調査を行い、その結果をまとめて表示したデータをいう。
- 3 主題図は、土地利用図、地質図、植生分類図、湖沼図、ハザードマップ、浸水想定区域図等をいい、原則として既成の基図データを使用して作成する。

第2節 作業計画

(要旨)

第421条 作業計画は、第11条の規定によるほか、主題図の目的に応じて作成する。

第3節 作業方法

(作業方法)

第422条 その他の応用測量の作業方法は、原則として、第3編の規定を準用して行うものとする。

第4節 作業内容

(作業内容)

- 第423条 主題図データファイルの作成は、その目的に応じて実施するものとし、次の工程を標準とする。
 - 基図データ、各種地図データ、空中写真、航空レーザ計測データ、属性情報及びその他必要な資料の収集
 - 二 計測基図の作成及び数値データ化
 - 三 構造化及び属性データの付与
 - 四 主題図データファイル作成
- 2 基図データは、現状を適切に現したものを優先して使用するものとする。
- 3 収集した各種資料の使用にあたっては、精度、作成年等を確認し使用するものとする。
- 4 計測基図は、作成時点で点検を行う。

第5節 品質評価

(品質評価)

第424条 主題図データファイルの品質評価は、第44条の規定を準用する。 第6節 成果等の整理

(メタデータの作成)

- 第425条 主題図データファイルのメタデータの作成は、第45条の規定を準用する。 (成果等)
- 第426条 その他の応用測量の成果等は、次のとおりとする。
 - 一 主題図データファイル
 - 二 品質評価表
 - 三 メタデータ
 - 四 その他の資料

附則

この規程は、平成20年5月12日から適用する。